Evaluation of soil constitutive model on braced excavation support behaviour
For this project, a two dimensional finite element analysis using PLAXIS was conducted to evaluate the performances of two types of soil stress-strain model, namely, Mohr-Coulomb model and the Hardening Soil model for excavations in clay. The results from these two models were compared in regards to...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/52718 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | For this project, a two dimensional finite element analysis using PLAXIS was conducted to evaluate the performances of two types of soil stress-strain model, namely, Mohr-Coulomb model and the Hardening Soil model for excavations in clay. The results from these two models were compared in regards to the best fit E_u/C_u ratio, maximum wall deflection, ground settlement and strut forces. The best fit E_u/C_u ratio was plotted against various parameters such as Plasticity Index (PI), Undrained Shear Strength (Cu), Factor of Safety (Fs) as well as (Cu/(σ_v^' )) to obtain correlations. A total of seven case studies with complete soil data were used for analysis.
In order to obtain the best fit E_u/C_u ratio for both the Mohr-Coulomb model and the Hardening Soil model, models were created by varying the Eu values from the available Cu data. The best fit E_u/C_u ratio model would have the one with the closest fit with the actual measured wall deflection.
The results show that using the Mohr-Coulomb model for excavation analysis in clay tend to produce higher values for the best fit E_u/C_u ratio. Also, using the Mohr-Coulomb model tends to produce smaller initial settlement but larger final settlement. In addition, using the Mohr-Coulomb model tends to produce 10~30% more strut forces than using the Hardening Soil model. Lastly, there is a downward sloping trend when the best fit E_u/C_u ratio is plotted against (Cu/(σ_v^' )). |
---|