CT Image analysis of proximal ulna for improved implant design
Understanding the morphology of the proximal ulna using Computed Tomography (CT) scan is important in estimating the shape and size of elbow for improved implant design for the patients. The current methods are unable to accurately detect the canal, especially at locations close to the proximal ulna...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/52859 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-52859 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-528592023-03-03T15:38:46Z CT Image analysis of proximal ulna for improved implant design Tan, Kenneth Yong Long. Poh Chueh Loo School of Chemical and Biomedical Engineering DRNTU::Engineering Understanding the morphology of the proximal ulna using Computed Tomography (CT) scan is important in estimating the shape and size of elbow for improved implant design for the patients. The current methods are unable to accurately detect the canal, especially at locations close to the proximal ulna. The objective of this project is to determine the intra-medullary dimensions of the ulna by developing more advanced image processing technique, texture-based segmentation. MaZda, a computer software for calculation of texture parameters/features is used to perform CT image analysis of the ulna. CT scans of 19 proximal ulna are analyzed using a cross validation process. Analysis is done at 2R (location where simple methods are known to fail) to test the suggested methodology. Dice’s Coefficient (DSC) will be used to show the superiority of the developed method at this location. Our findings have proven that the suggested methodology gives a better result of an average DSC of 0.751, while the simple thresholding based on Hounsfield units (current method) gives an average DSC of 0.48. Bachelor of Engineering (Chemical and Biomolecular Engineering) 2013-05-28T08:00:39Z 2013-05-28T08:00:39Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/52859 en Nanyang Technological University 69 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering |
spellingShingle |
DRNTU::Engineering Tan, Kenneth Yong Long. CT Image analysis of proximal ulna for improved implant design |
description |
Understanding the morphology of the proximal ulna using Computed Tomography (CT) scan is important in estimating the shape and size of elbow for improved implant design for the patients. The current methods are unable to accurately detect the canal, especially at locations close to the proximal ulna. The objective of this project is to determine the intra-medullary dimensions of the ulna by developing more advanced image processing technique, texture-based segmentation. MaZda, a computer software for calculation of texture parameters/features is used to perform CT image analysis of the ulna. CT scans of 19 proximal ulna are analyzed using a cross validation process. Analysis is done at 2R (location where simple methods are known to fail) to test the suggested methodology. Dice’s Coefficient (DSC) will be used to show the superiority of the developed method at this location. Our findings have proven that the suggested methodology gives a better result of an average DSC of 0.751, while the simple thresholding based on Hounsfield units (current method) gives an average DSC of 0.48. |
author2 |
Poh Chueh Loo |
author_facet |
Poh Chueh Loo Tan, Kenneth Yong Long. |
format |
Final Year Project |
author |
Tan, Kenneth Yong Long. |
author_sort |
Tan, Kenneth Yong Long. |
title |
CT Image analysis of proximal ulna for improved implant design |
title_short |
CT Image analysis of proximal ulna for improved implant design |
title_full |
CT Image analysis of proximal ulna for improved implant design |
title_fullStr |
CT Image analysis of proximal ulna for improved implant design |
title_full_unstemmed |
CT Image analysis of proximal ulna for improved implant design |
title_sort |
ct image analysis of proximal ulna for improved implant design |
publishDate |
2013 |
url |
http://hdl.handle.net/10356/52859 |
_version_ |
1759856989932879872 |