The role of oligoelectrolytes in microbial reductive dechlorination

Oligoelectrolytes such as 4,4ʹ-bis(4ʹ-(N,N-bis(6ʹʹ-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbenetetraiodide (DSSN+) are a class of molecules that insert spontaneously into bacterial cell membrane to facilitate extracellular electron transfer. Enhanced extracellular electron transfer in organ...

Full description

Saved in:
Bibliographic Details
Main Author: Loo, Heup Seng.
Other Authors: School of Civil and Environmental Engineering
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/52967
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-52967
record_format dspace
spelling sg-ntu-dr.10356-529672023-03-03T17:20:23Z The role of oligoelectrolytes in microbial reductive dechlorination Loo, Heup Seng. School of Civil and Environmental Engineering Singapore Centre for Environmental Life Sciences Engineering Stefan Wuertz DRNTU::Engineering Oligoelectrolytes such as 4,4ʹ-bis(4ʹ-(N,N-bis(6ʹʹ-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbenetetraiodide (DSSN+) are a class of molecules that insert spontaneously into bacterial cell membrane to facilitate extracellular electron transfer. Enhanced extracellular electron transfer in organisms can be a great asset to the environment as they can be used in applications such as bioremediation of tetrachloroethylene (PCE) polluted sites. In this project, we explored the efficiency of DSSN+ and two developmental redox mediators (RM), RM1 and RM2, on an anaerobic mixed dechlorinating culture that was acquired from a polluted site in Sydney, Australia. The results showed that RM1, RM2, DSSN+ and control setup had a dechlorination rate of 1.0283μM/h, 1.0254μM/h, 0.7139μM/h and 0.7735μM/h respectively. Based on dechlorination studies that were conducted, RM1 and RM2 showed great potential in enhancing PCE dechlorination rates with the mixed dechlorinating culture. To better understand the role of RMs behind this process, specific species which can execute extracellular electron transfer were selected for a more in depth study. Shewanella oneidensis MR-1 is one of the exoelectrogenic species that is known to facilitate Fe(III) reduction via c-type cytochrome and heme at the cell surface. Recombinant Escherichia coli strains, ccm and mtrCAB expressing heme transporter and cytochrome c genes from S.oneidensis MR-1, were also able to reduce soluble Ferric nitrilotriacetic acid (Fe(III)NTA). Thus, using RM1 and RM2 which showed enhancement of PCE dechlorination rate, we tested the ability of S.oneidensis, wild type E. coli and genetically engineered E. coli ccm and E. coli mtrCAB to dechlorinate PCE while reducing Fe(III)NTA at the same time. However, no signs of dechlorination were observed with S. oneidensis and genetically engineered E. coli strains, suggesting that this electron transfer pathway might not be suitable to channel electrons to PCE as a terminal electron acceptor. In conclusion, RM1 and RM2 have the potential of enhancing PCE dechlorination rate and given more time, more studies can be done to find out the conditions needed to optimize the compounds. Bachelor of Engineering (Environmental Engineering) 2013-05-29T06:08:41Z 2013-05-29T06:08:41Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/52967 en Nanyang Technological University 42 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Loo, Heup Seng.
The role of oligoelectrolytes in microbial reductive dechlorination
description Oligoelectrolytes such as 4,4ʹ-bis(4ʹ-(N,N-bis(6ʹʹ-(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbenetetraiodide (DSSN+) are a class of molecules that insert spontaneously into bacterial cell membrane to facilitate extracellular electron transfer. Enhanced extracellular electron transfer in organisms can be a great asset to the environment as they can be used in applications such as bioremediation of tetrachloroethylene (PCE) polluted sites. In this project, we explored the efficiency of DSSN+ and two developmental redox mediators (RM), RM1 and RM2, on an anaerobic mixed dechlorinating culture that was acquired from a polluted site in Sydney, Australia. The results showed that RM1, RM2, DSSN+ and control setup had a dechlorination rate of 1.0283μM/h, 1.0254μM/h, 0.7139μM/h and 0.7735μM/h respectively. Based on dechlorination studies that were conducted, RM1 and RM2 showed great potential in enhancing PCE dechlorination rates with the mixed dechlorinating culture. To better understand the role of RMs behind this process, specific species which can execute extracellular electron transfer were selected for a more in depth study. Shewanella oneidensis MR-1 is one of the exoelectrogenic species that is known to facilitate Fe(III) reduction via c-type cytochrome and heme at the cell surface. Recombinant Escherichia coli strains, ccm and mtrCAB expressing heme transporter and cytochrome c genes from S.oneidensis MR-1, were also able to reduce soluble Ferric nitrilotriacetic acid (Fe(III)NTA). Thus, using RM1 and RM2 which showed enhancement of PCE dechlorination rate, we tested the ability of S.oneidensis, wild type E. coli and genetically engineered E. coli ccm and E. coli mtrCAB to dechlorinate PCE while reducing Fe(III)NTA at the same time. However, no signs of dechlorination were observed with S. oneidensis and genetically engineered E. coli strains, suggesting that this electron transfer pathway might not be suitable to channel electrons to PCE as a terminal electron acceptor. In conclusion, RM1 and RM2 have the potential of enhancing PCE dechlorination rate and given more time, more studies can be done to find out the conditions needed to optimize the compounds.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Loo, Heup Seng.
format Final Year Project
author Loo, Heup Seng.
author_sort Loo, Heup Seng.
title The role of oligoelectrolytes in microbial reductive dechlorination
title_short The role of oligoelectrolytes in microbial reductive dechlorination
title_full The role of oligoelectrolytes in microbial reductive dechlorination
title_fullStr The role of oligoelectrolytes in microbial reductive dechlorination
title_full_unstemmed The role of oligoelectrolytes in microbial reductive dechlorination
title_sort role of oligoelectrolytes in microbial reductive dechlorination
publishDate 2013
url http://hdl.handle.net/10356/52967
_version_ 1759852949258895360