Estimation of closed-form least-squares source location from range-difference measurements
The closed form solution for localization of source position is presented with a set of noisy range difference measurements. The error criteria have been minimized by the linear least squares equation error minimization techniques. The range and bearing are estimated using range differences (RD) whi...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/53459 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-53459 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-534592023-07-04T16:25:48Z Estimation of closed-form least-squares source location from range-difference measurements Balasubramaniam Gangadevi School of Electrical and Electronic Engineering Andy Khong Wai Hoong DRNTU::Engineering::Electrical and electronic engineering The closed form solution for localization of source position is presented with a set of noisy range difference measurements. The error criteria have been minimized by the linear least squares equation error minimization techniques. The range and bearing are estimated using range differences (RD) which is used by all the three source localization methods. The nine-element orthogonal passive stationary sensor array is used for geometrical interpretations. The sensor arrangement should be well represented in all three dimensions to obtain desired estimation accuracy. The analytical expressions for the bias, variance and standard deviation of the source localization estimators are validated by the Monte-Carlo simulations. A simulation model was developed in MATLAB to study the performance of all the three closed form localization estimation methods. Simulation results show the estimation accuracy of spherical interpolation (SI) with very good noise immunity as compared to the other two source localization methods. Master of Science (Signal Processing) 2013-06-04T02:49:18Z 2013-06-04T02:49:18Z 2011 2011 Thesis http://hdl.handle.net/10356/53459 en 58 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Balasubramaniam Gangadevi Estimation of closed-form least-squares source location from range-difference measurements |
description |
The closed form solution for localization of source position is presented with a set of noisy range difference measurements. The error criteria have been minimized by the linear least squares equation error minimization techniques. The range and bearing are estimated using range differences (RD) which is used by all the three source localization methods. The nine-element orthogonal passive stationary sensor array is used for geometrical interpretations. The sensor arrangement should be well represented in all three dimensions to obtain desired estimation accuracy. The analytical expressions for the bias, variance and standard deviation of the source localization estimators are validated by the Monte-Carlo simulations. A simulation model was developed in MATLAB to study the performance of all the three closed form localization estimation methods. Simulation results show the estimation accuracy of spherical interpolation (SI) with very good noise immunity as compared to the other two source localization methods. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Balasubramaniam Gangadevi |
format |
Theses and Dissertations |
author |
Balasubramaniam Gangadevi |
author_sort |
Balasubramaniam Gangadevi |
title |
Estimation of closed-form least-squares source location from range-difference measurements |
title_short |
Estimation of closed-form least-squares source location from range-difference measurements |
title_full |
Estimation of closed-form least-squares source location from range-difference measurements |
title_fullStr |
Estimation of closed-form least-squares source location from range-difference measurements |
title_full_unstemmed |
Estimation of closed-form least-squares source location from range-difference measurements |
title_sort |
estimation of closed-form least-squares source location from range-difference measurements |
publishDate |
2013 |
url |
http://hdl.handle.net/10356/53459 |
_version_ |
1772826285500792832 |