Analysis of near cortex versus both cortex screw fixation in bone fracture surgery
Fractures are commonly encountered injuries due to falls and accidents in humans. A method of stabilizing a fracture is the usage of Locking Compression Plates (LCPs). Accelerated healing is achieved through critical compressive stresses exerted by the bone-plate secured with screws. Prompt healing...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/53630 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Fractures are commonly encountered injuries due to falls and accidents in humans. A method of stabilizing a fracture is the usage of Locking Compression Plates (LCPs). Accelerated healing is achieved through critical compressive stresses exerted by the bone-plate secured with screws. Prompt healing can occur when the blood supply to bone is maintained or restored early.
This project seeks to create and validate fracture fixation models of 8-hole and 9-hole LCPs together with Locking Head Screws (LHS) on long bones through Finite Element Method (FEM). The validation processes were done with Finite Element (FE) simulation of 3-point bending conditions on the LCPs, axial loading and 4-point bending conditions on the plate-bone constructs. The FE simulation results were then validated by experimental data. The validated models will pave the way in determining the type and size of over-drilled holes at the near cortex that will reduce stiffness and eventually allow for optimized bone healing.
In the initial validation process, the models of 8-hole and 9-hole LCPs have stiffness values within 5 % deviation of the actual bone-plates. The validated LCP models are then assembled as plate-bone constructs with LHS and synthetic bone models for further validation. |
---|