Structural optimization of composite fuselage panel including buckling and manufacturing constraints
Multidisciplinary Design Optimization (MDO) techniques were successfully developed and applied in sizing a composite fuselage panel of narrow-body airliner. The detailed finite element fuselage panel was undergone optimization process developed around gradient-based optimizer MSC Nastran SOL 200. Co...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/53748 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Multidisciplinary Design Optimization (MDO) techniques were successfully developed and applied in sizing a composite fuselage panel of narrow-body airliner. The detailed finite element fuselage panel was undergone optimization process developed around gradient-based optimizer MSC Nastran SOL 200. Coupling with selected critical loadings, all relevant sizing requirements including structural strength, stability, and basic manufacturing constraints were embedded into the optimization process. Semi-analytical, closed-form buckling constraints were also integrated inside the optimization algorithms so as to gain efficient optimization process suitable for getting close optimal results in the preliminary design phase. |
---|