Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors

Enhancing the hydrolysis of macromolecular extracellular polymeric substances and organic particulates with hydrolytic enzymes may potentially alleviate membrane fouling and solids accumulation in membrane bioreactors respectively. Prior studies investigating the effects of hydrolases on wastewater...

Full description

Saved in:
Bibliographic Details
Main Author: Loh, Carissa Mei Ling L.
Other Authors: School of Civil and Environmental Engineering
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/53870
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-53870
record_format dspace
spelling sg-ntu-dr.10356-538702023-03-03T17:26:58Z Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors Loh, Carissa Mei Ling L. School of Civil and Environmental Engineering Wong Chuen Yung, Philip DRNTU::Engineering::Environmental engineering::Water treatment Enhancing the hydrolysis of macromolecular extracellular polymeric substances and organic particulates with hydrolytic enzymes may potentially alleviate membrane fouling and solids accumulation in membrane bioreactors respectively. Prior studies investigating the effects of hydrolases on wastewater have been conducted, with positive results. As supplementing commercial enzymes may not be cost-feasible, in this study the recovery of hydrolases from wasted sludge was investigated. α-amylase, α-glucosidase and protease were recovered from wasted sludge via ultrasonication, and their activities quantified. An optimization study was carried out to determine the optimum ultrasonication intensity and duration for the maximum solubilization and recovery of enzymes. Next, the effects of recycling the recovered enzyme extracts were studied over a duration of two months, using three customized 500ml Erlenmeyer flasks as batch reactors – one augmented with recycled enzyme extracts from wasted anaerobic sludge, one augmented with recycled enzyme extracts from aerobic sludge, and one control. Biogas production was monitored on a daily basis, while sCOD, TSS and VFA analysis was done thrice a week. The optimum ultrasonication parameters for maximum enzyme recovery and maximum solubilization were determined to be 30 minutes at 65 W. It was found that ultrasonication results in 60-70% and ~40% reduction in TSS for anaerobic and aerobic sludge respectively, which may translate to potential downstream processing cost savings. The control bioreactor had a biogas production of 225ml/day, approximately 60% of which was methane gas. In contrast, the bioreactors augmented with recycled enzymes from anaerobic and aerobic sludge had biogas productions of 203ml/day and 85ml/day respectively. As it was observed that recycled enzymes exhibited a slight inhibition on the anaerobic process, the biodegradability was investigated, and the pseudo first-order hydrolysis kinetic constants were found to be 0.0141 d-1, 0.0276 d-1 and 0.0795 d-1 for the control, bioreactors augmented with anaerobic sludge-derived enzymes and aerobic sludge-derived enzymes respectively. The faster degradation kinetics for the two test bioreactors showed that despite initial signs of inhibition, as suitable microbial strains developed over time, the accumulated organic matter could be degraded. Bachelor of Engineering (Environmental Engineering) 2013-06-10T01:54:16Z 2013-06-10T01:54:16Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/53870 en Nanyang Technological University 51 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Environmental engineering::Water treatment
spellingShingle DRNTU::Engineering::Environmental engineering::Water treatment
Loh, Carissa Mei Ling L.
Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
description Enhancing the hydrolysis of macromolecular extracellular polymeric substances and organic particulates with hydrolytic enzymes may potentially alleviate membrane fouling and solids accumulation in membrane bioreactors respectively. Prior studies investigating the effects of hydrolases on wastewater have been conducted, with positive results. As supplementing commercial enzymes may not be cost-feasible, in this study the recovery of hydrolases from wasted sludge was investigated. α-amylase, α-glucosidase and protease were recovered from wasted sludge via ultrasonication, and their activities quantified. An optimization study was carried out to determine the optimum ultrasonication intensity and duration for the maximum solubilization and recovery of enzymes. Next, the effects of recycling the recovered enzyme extracts were studied over a duration of two months, using three customized 500ml Erlenmeyer flasks as batch reactors – one augmented with recycled enzyme extracts from wasted anaerobic sludge, one augmented with recycled enzyme extracts from aerobic sludge, and one control. Biogas production was monitored on a daily basis, while sCOD, TSS and VFA analysis was done thrice a week. The optimum ultrasonication parameters for maximum enzyme recovery and maximum solubilization were determined to be 30 minutes at 65 W. It was found that ultrasonication results in 60-70% and ~40% reduction in TSS for anaerobic and aerobic sludge respectively, which may translate to potential downstream processing cost savings. The control bioreactor had a biogas production of 225ml/day, approximately 60% of which was methane gas. In contrast, the bioreactors augmented with recycled enzymes from anaerobic and aerobic sludge had biogas productions of 203ml/day and 85ml/day respectively. As it was observed that recycled enzymes exhibited a slight inhibition on the anaerobic process, the biodegradability was investigated, and the pseudo first-order hydrolysis kinetic constants were found to be 0.0141 d-1, 0.0276 d-1 and 0.0795 d-1 for the control, bioreactors augmented with anaerobic sludge-derived enzymes and aerobic sludge-derived enzymes respectively. The faster degradation kinetics for the two test bioreactors showed that despite initial signs of inhibition, as suitable microbial strains developed over time, the accumulated organic matter could be degraded.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Loh, Carissa Mei Ling L.
format Final Year Project
author Loh, Carissa Mei Ling L.
author_sort Loh, Carissa Mei Ling L.
title Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
title_short Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
title_full Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
title_fullStr Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
title_full_unstemmed Sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
title_sort sustainable approach for enzyme augmentation in anaerobic membrane bioreactors
publishDate 2013
url http://hdl.handle.net/10356/53870
_version_ 1759855579241644032