Evaporation of nanofluids

Nanofluids are suspensions of nanoparticles in fluids that exhibit significant enhancement of their properties at modest nanoparticle concentrations. They are utilized in electronic applications as cooling devices in combination with thin film evaporation and in industrial applications where overhea...

Full description

Saved in:
Bibliographic Details
Main Author: Choong, Clarrisa Yu Ying.
Other Authors: School of Mechanical and Aerospace Engineering
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/53961
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-53961
record_format dspace
spelling sg-ntu-dr.10356-539612023-03-04T19:00:43Z Evaporation of nanofluids Choong, Clarrisa Yu Ying. School of Mechanical and Aerospace Engineering Fei Duan DRNTU::Engineering::Mechanical engineering Nanofluids are suspensions of nanoparticles in fluids that exhibit significant enhancement of their properties at modest nanoparticle concentrations. They are utilized in electronic applications as cooling devices in combination with thin film evaporation and in industrial applications where overheated surfaces in power plants are cooled down more quickly. In an effort to elucidate nanofluid droplet evaporation characteristics, this study presents experimentation on the evaporation of nanofluids. The main objective is to examine how varying parameters affect the evaporation of nanofluids in terms of contact angle, base diameter and volume. Graphite nanoparticles suspended in a binary mixture of ethanol and DI water is used as the working fluid. By varying the concentrations of ethanol at 10 wt%, 25 wt% and 50 wt% and concentrations of nanoparticles at 0.5mg/ml, 1mg/ml 1.5mg/ml and 2mg/ml, as well as the duration of ultrasonication at 1 hour and 2 hours, the nanofluids are then deposited as droplets onto silicon wafer substrates and analyzed with the use of goniometer. It is found that higher ethanol concentration in base solvents leads to faster evaporation rate and a three-phase evaporation behavior can be observed. The overall evaporation time for base solvent droplets is also found to be about two times longer than for nanofluids. Evaporation rate is the slowest for 2mg/ml nanofluid droplet, suggesting that evaporation rate declines with an increase in the nanoparticle concentration and causes deviation from the classical D^2-law. The wetting dynamics of the droplets throughout the evaporation process shows major influence of nanoparticles. Agglomeration of nanoparticles occurs over time and even more actively in nanofliuds with higher nanoparticle concentration, thus slowing down the evaporation rate of nanofluids. However, evaporation of nanofluids seems to be insensitive to ultrasonication experimental conditions. Henceforth, the use of surfactants preventing agglomeration of nanoparticles in prepared colloidal solution and investigation on temperature and surface tension can be recommended for future works in the evaporation of nanofluids. Bachelor of Engineering (Mechanical Engineering) 2013-06-10T07:58:14Z 2013-06-10T07:58:14Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/53961 en Nanyang Technological University 89 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Choong, Clarrisa Yu Ying.
Evaporation of nanofluids
description Nanofluids are suspensions of nanoparticles in fluids that exhibit significant enhancement of their properties at modest nanoparticle concentrations. They are utilized in electronic applications as cooling devices in combination with thin film evaporation and in industrial applications where overheated surfaces in power plants are cooled down more quickly. In an effort to elucidate nanofluid droplet evaporation characteristics, this study presents experimentation on the evaporation of nanofluids. The main objective is to examine how varying parameters affect the evaporation of nanofluids in terms of contact angle, base diameter and volume. Graphite nanoparticles suspended in a binary mixture of ethanol and DI water is used as the working fluid. By varying the concentrations of ethanol at 10 wt%, 25 wt% and 50 wt% and concentrations of nanoparticles at 0.5mg/ml, 1mg/ml 1.5mg/ml and 2mg/ml, as well as the duration of ultrasonication at 1 hour and 2 hours, the nanofluids are then deposited as droplets onto silicon wafer substrates and analyzed with the use of goniometer. It is found that higher ethanol concentration in base solvents leads to faster evaporation rate and a three-phase evaporation behavior can be observed. The overall evaporation time for base solvent droplets is also found to be about two times longer than for nanofluids. Evaporation rate is the slowest for 2mg/ml nanofluid droplet, suggesting that evaporation rate declines with an increase in the nanoparticle concentration and causes deviation from the classical D^2-law. The wetting dynamics of the droplets throughout the evaporation process shows major influence of nanoparticles. Agglomeration of nanoparticles occurs over time and even more actively in nanofliuds with higher nanoparticle concentration, thus slowing down the evaporation rate of nanofluids. However, evaporation of nanofluids seems to be insensitive to ultrasonication experimental conditions. Henceforth, the use of surfactants preventing agglomeration of nanoparticles in prepared colloidal solution and investigation on temperature and surface tension can be recommended for future works in the evaporation of nanofluids.
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Choong, Clarrisa Yu Ying.
format Final Year Project
author Choong, Clarrisa Yu Ying.
author_sort Choong, Clarrisa Yu Ying.
title Evaporation of nanofluids
title_short Evaporation of nanofluids
title_full Evaporation of nanofluids
title_fullStr Evaporation of nanofluids
title_full_unstemmed Evaporation of nanofluids
title_sort evaporation of nanofluids
publishDate 2013
url http://hdl.handle.net/10356/53961
_version_ 1759854085540937728