On the material behaviour in a progressive microforming process

In the 21st century, miniaturization has emerged in several fields of technology, leading to the development of mini products and devices for industries such as electronics, communication and optics. With increasing demand, many researches have been initiated worldwide in microforming processes....

Full description

Saved in:
Bibliographic Details
Main Author: Phee, Jeremy Jun Kai.
Other Authors: Tan Ming Jen
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/54036
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-54036
record_format dspace
spelling sg-ntu-dr.10356-540362023-03-04T18:19:54Z On the material behaviour in a progressive microforming process Phee, Jeremy Jun Kai. Tan Ming Jen School of Mechanical and Aerospace Engineering DRNTU::Engineering In the 21st century, miniaturization has emerged in several fields of technology, leading to the development of mini products and devices for industries such as electronics, communication and optics. With increasing demand, many researches have been initiated worldwide in microforming processes. Microforming is the technology to manufacture very small metallic parts or structures with at least two dimensions in the sub-millimeter. Currently, microforming technology is a promising way towards industrial micro-parts manufacturing so as to reduce wastage and to increase production and efficiency. There are many factors that could affect the microforming process. At the sub-millimeter range, the deformation of the workpiece can be dominated by size effects. Decreasing the specimen size can cause drastic changes in the material mechanical properties and frictional behaviour. In this report, microforming was done on copper strips. Micropins of different diameters were fabricated using different punch diameters. This allows investigation of the material flow behaviour during the microforming process and the mechanical properties of the material. Analysis of microstructure was done to observe how the material flows during the microforming process of the micro-pin. In addition, microhardness tests are carried out to study different impact of the parameters. Furthermore, the effect of fillet radius in the entrance of the die cavity is investigated. Lastly, comparison of the micro-pin from progressive microforming process to common industrial pin made from micro-machining process is also done. When a larger punch displacement was used in the microforming process, the microstructure of the pins shows that the central grains will elongate and deform more severely. Dead zone can be found at certain area of the pin head which indicate that no work hardening was done at that area during the microforming process. At the pin head, equiaxial grains can be observed as well, corresponding to dead metal zone. For micropins with larger pin diameters, the grains at the micropins will not be as severely deformed as that of micropins with smaller pin diameters. It is because it is easier for the material to flow into the die cavity during the microforming process. Entrance radius of die cavity affects the deformation of grains as it is easier for material to flow into die cavity, causing less elongation of grains. Micro-pins made from progressive microforming process has more work hardening on grains whereas pins made from micromachining process has few yet larger grains. Bachelor of Engineering (Mechanical Engineering) 2013-06-11T09:17:06Z 2013-06-11T09:17:06Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/54036 en Nanyang Technological University 52 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Phee, Jeremy Jun Kai.
On the material behaviour in a progressive microforming process
description In the 21st century, miniaturization has emerged in several fields of technology, leading to the development of mini products and devices for industries such as electronics, communication and optics. With increasing demand, many researches have been initiated worldwide in microforming processes. Microforming is the technology to manufacture very small metallic parts or structures with at least two dimensions in the sub-millimeter. Currently, microforming technology is a promising way towards industrial micro-parts manufacturing so as to reduce wastage and to increase production and efficiency. There are many factors that could affect the microforming process. At the sub-millimeter range, the deformation of the workpiece can be dominated by size effects. Decreasing the specimen size can cause drastic changes in the material mechanical properties and frictional behaviour. In this report, microforming was done on copper strips. Micropins of different diameters were fabricated using different punch diameters. This allows investigation of the material flow behaviour during the microforming process and the mechanical properties of the material. Analysis of microstructure was done to observe how the material flows during the microforming process of the micro-pin. In addition, microhardness tests are carried out to study different impact of the parameters. Furthermore, the effect of fillet radius in the entrance of the die cavity is investigated. Lastly, comparison of the micro-pin from progressive microforming process to common industrial pin made from micro-machining process is also done. When a larger punch displacement was used in the microforming process, the microstructure of the pins shows that the central grains will elongate and deform more severely. Dead zone can be found at certain area of the pin head which indicate that no work hardening was done at that area during the microforming process. At the pin head, equiaxial grains can be observed as well, corresponding to dead metal zone. For micropins with larger pin diameters, the grains at the micropins will not be as severely deformed as that of micropins with smaller pin diameters. It is because it is easier for the material to flow into the die cavity during the microforming process. Entrance radius of die cavity affects the deformation of grains as it is easier for material to flow into die cavity, causing less elongation of grains. Micro-pins made from progressive microforming process has more work hardening on grains whereas pins made from micromachining process has few yet larger grains.
author2 Tan Ming Jen
author_facet Tan Ming Jen
Phee, Jeremy Jun Kai.
format Final Year Project
author Phee, Jeremy Jun Kai.
author_sort Phee, Jeremy Jun Kai.
title On the material behaviour in a progressive microforming process
title_short On the material behaviour in a progressive microforming process
title_full On the material behaviour in a progressive microforming process
title_fullStr On the material behaviour in a progressive microforming process
title_full_unstemmed On the material behaviour in a progressive microforming process
title_sort on the material behaviour in a progressive microforming process
publishDate 2013
url http://hdl.handle.net/10356/54036
_version_ 1759856743842578432