High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature
Because of its lightweight potential in the automobile and aerospace industries, research on the mechanical response of magnesium alloy under the effect of temperature or high strain rates have been conducted. On the other hand, lightweight composites have received relatively few attention. In this...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/54052 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-54052 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-540522023-03-04T18:49:47Z High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature Goh, Kok Swee. Shu Dong Wei School of Mechanical and Aerospace Engineering DRNTU::Engineering Because of its lightweight potential in the automobile and aerospace industries, research on the mechanical response of magnesium alloy under the effect of temperature or high strain rates have been conducted. On the other hand, lightweight composites have received relatively few attention. In this paper, temperature-dependent deformation behaviors of AZ31 Mg alloy and its reinforced composite are studied. Both materials were subjected to high strain rate dynamic loading using Compressive Split Hopkinson Pressure Bar under testing temperatures of -30°C, 25°C and 200°C. Mechanical properties such compressive strength and ductility were analyzed and results such as stress-strain, log stress-log strain and failure strain-homologous temperature graphs were discussed. An analytic comparison between AZ31B Mg alloy and AZ31B reinforced composite was also examined and results revealed AZ31B reinforced composite display superior strength properties with slightly weaker ductility than AZ31B Mg alloy at all three temperature variations. Bachelor of Engineering (Mechanical Engineering) 2013-06-13T06:00:16Z 2013-06-13T06:00:16Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/54052 en Nanyang Technological University 85 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering |
spellingShingle |
DRNTU::Engineering Goh, Kok Swee. High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
description |
Because of its lightweight potential in the automobile and aerospace industries, research on the mechanical response of magnesium alloy under the effect of temperature or high strain rates have been conducted. On the other hand, lightweight composites have received relatively few attention. In this paper, temperature-dependent deformation behaviors of AZ31 Mg alloy and its reinforced composite are studied. Both materials were subjected to high strain rate dynamic loading using Compressive Split Hopkinson Pressure Bar under testing temperatures of -30°C, 25°C and 200°C. Mechanical properties such compressive strength and ductility were analyzed and results such as stress-strain, log stress-log strain and failure strain-homologous temperature graphs were discussed. An analytic comparison between AZ31B Mg alloy and AZ31B reinforced composite was also examined and results revealed AZ31B reinforced composite display superior strength properties with slightly weaker ductility than AZ31B Mg alloy at all three temperature variations. |
author2 |
Shu Dong Wei |
author_facet |
Shu Dong Wei Goh, Kok Swee. |
format |
Final Year Project |
author |
Goh, Kok Swee. |
author_sort |
Goh, Kok Swee. |
title |
High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
title_short |
High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
title_full |
High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
title_fullStr |
High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
title_full_unstemmed |
High strain rate behaviour of magnesium alloy AZ31B and its nano-composite with variation of temperature |
title_sort |
high strain rate behaviour of magnesium alloy az31b and its nano-composite with variation of temperature |
publishDate |
2013 |
url |
http://hdl.handle.net/10356/54052 |
_version_ |
1759856939277221888 |