Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect
Magnesium alloys (AZ-series) have been attracting much attention as the lightest structural materials which led to the combination of magnesium and silicon carbide nanoparticles (AZ-SiC series) to create a new kind of nanocomposite, commonly known as Metal Matrix Composites (MMCs). A legitimate scie...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/54073 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-54073 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-540732023-03-04T18:24:50Z Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect Koh, Vincent Wei Sheng. Shu Dong Wei School of Mechanical and Aerospace Engineering DRNTU::Engineering::Materials::Compositional materials science DRNTU::Engineering::Materials::Material testing and characterization Magnesium alloys (AZ-series) have been attracting much attention as the lightest structural materials which led to the combination of magnesium and silicon carbide nanoparticles (AZ-SiC series) to create a new kind of nanocomposite, commonly known as Metal Matrix Composites (MMCs). A legitimate scientific study is not done to look at the change in microstructure and composition of AZ31B and AZ31B-1vol%SiC after high strain rate (3000±200/s) Split Hopkinson Pressure Bar testing at -30°C & 25°C. Microscopy techniques such as Optical Microscopy (OM), Scanning Electron Microscope (SEM) and Electron Dispersive Spectrum (EDS) was being utilised to look at the microstructure and composition of the material. From stress-strain curve obtained after high strain rate compression testing, the fracture point in AZ31B for -30°C specimen and 25°C specimen is 0.335mm/mm and 0.355 mm/mm respectively. The ultimate strength (compressive) in in AZ31B for -30°C specimen and 25°C specimen is 295 MPa and 305 MPa respectively. The fracture point in AZ31B-1vol%SiC for -30°C specimen and 25°C specimen is 0.280mm/mm and 0.305/mm respectively. The ultimate strength (compressive) in AZ31B-1vol%SiC for -30°C specimen and 25°C specimen is 460 MPa and 440 MPa respectively. Grain size measurement on average is about 78 μm for AZ31B and 75 μm for AZ31B-1vol%SiC. AZ31B and AZ31B-1vol%SiC revealed cracks with branching for both 25°C and -30°C specimens after compression testing. Volume of twins in -30°C specimen is greater as compared to 25°C specimen upon compression testing in AZ31B-1vol%SiC. The microstructure of the AZ31B alloy consists of fine porosities and α-Mg hcp matrix and β-Mg₁₇Al₁₂ second phase. The microstructure of the AZ31B-1vol%SiC alloy consists of fine porosities and α-Mg hcp matrix and Mg₂Si second phase. Reasonably uniform distribution of SiC nanoparticles can be observed. Overall, SiC nanoparticles did play an important role in grain refinement of AZ31B. Bachelor of Engineering (Mechanical Engineering) 2013-06-13T06:50:21Z 2013-06-13T06:50:21Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/54073 en Nanyang Technological University 159 p. application/pdf application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Compositional materials science DRNTU::Engineering::Materials::Material testing and characterization |
spellingShingle |
DRNTU::Engineering::Materials::Compositional materials science DRNTU::Engineering::Materials::Material testing and characterization Koh, Vincent Wei Sheng. Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
description |
Magnesium alloys (AZ-series) have been attracting much attention as the lightest structural materials which led to the combination of magnesium and silicon carbide nanoparticles (AZ-SiC series) to create a new kind of nanocomposite, commonly known as Metal Matrix Composites (MMCs). A legitimate scientific study is not done to look at the change in microstructure and composition of AZ31B and AZ31B-1vol%SiC after high strain rate (3000±200/s) Split Hopkinson Pressure Bar testing at -30°C & 25°C. Microscopy techniques such as Optical Microscopy (OM), Scanning Electron Microscope (SEM) and Electron Dispersive Spectrum (EDS) was being utilised to look at the microstructure and composition of the material. From stress-strain curve obtained after high strain rate compression testing, the fracture point in AZ31B for -30°C specimen and 25°C specimen is 0.335mm/mm and 0.355 mm/mm respectively. The ultimate strength (compressive) in in AZ31B for -30°C specimen and 25°C specimen is 295 MPa and 305 MPa respectively. The fracture point in AZ31B-1vol%SiC for -30°C specimen and 25°C specimen is 0.280mm/mm and 0.305/mm respectively. The ultimate strength (compressive) in AZ31B-1vol%SiC for -30°C specimen and 25°C specimen is 460 MPa and 440 MPa respectively. Grain size measurement on average is about 78 μm for AZ31B and 75 μm for AZ31B-1vol%SiC. AZ31B and AZ31B-1vol%SiC revealed cracks with branching for both 25°C and -30°C specimens after compression testing. Volume of twins in -30°C specimen is greater as compared to 25°C specimen upon compression testing in AZ31B-1vol%SiC. The microstructure of the AZ31B alloy consists of fine porosities and α-Mg hcp matrix and β-Mg₁₇Al₁₂ second phase. The microstructure of the AZ31B-1vol%SiC alloy consists of fine porosities and α-Mg hcp matrix and Mg₂Si second phase. Reasonably uniform distribution of SiC nanoparticles can be observed. Overall, SiC nanoparticles did play an important role in grain refinement of AZ31B. |
author2 |
Shu Dong Wei |
author_facet |
Shu Dong Wei Koh, Vincent Wei Sheng. |
format |
Final Year Project |
author |
Koh, Vincent Wei Sheng. |
author_sort |
Koh, Vincent Wei Sheng. |
title |
Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
title_short |
Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
title_full |
Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
title_fullStr |
Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
title_full_unstemmed |
Micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
title_sort |
micro-structure analysis of magnesium alloy and its nanocomposite on temperature effect |
publishDate |
2013 |
url |
http://hdl.handle.net/10356/54073 |
_version_ |
1759853543129350144 |