A tactical grade MEMS gyroscope

This report illustrates the research project of a tactical grade Micro Electrical Mechanical Systems (MEMS) gyroscope through simulation and presents the results of the data. The gyroscope is used to measure the angular rotation and around their sensitive axes. MEMS gyroscope uses the Corolis eff...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Justin Yuda.
Other Authors: Poenar Daniel Puiu
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/54207
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-54207
record_format dspace
spelling sg-ntu-dr.10356-542072023-07-07T16:45:42Z A tactical grade MEMS gyroscope Tan, Justin Yuda. Poenar Daniel Puiu School of Electrical and Electronic Engineering DRNTU::Engineering This report illustrates the research project of a tactical grade Micro Electrical Mechanical Systems (MEMS) gyroscope through simulation and presents the results of the data. The gyroscope is used to measure the angular rotation and around their sensitive axes. MEMS gyroscope uses the Corolis effect to measure the angular rate. This technology is growing and it is being used in many applications such as image stabilisation in digital cameras, tacking the orientation when GPS signal is lost and ect. The objective of this project is to develop ideas and moderate performance gyroscope using MEMS micro fabrications which will improve the current performance of all existing MEMS gyroscopes. The result of this research carries out aims to increase the Quality-effective Factor, Resonant Frequency and low Brownian Noise Floor of the MEMS gyroscope. With an improve quality factor, the gyroscope will be more accurate. By exploring the design of the tuning fork gyroscope, a decision will be made to best satisfy the requirements of this project. With the design in mind, the report will illustrate the process of getting a improved MEMS through the use of a Conventorware Architect software. The Conventorware Architect software has shown how we achieved the target specifications in both Quality Factor and Resonant Frequency. Bachelor of Engineering 2013-06-14T08:33:58Z 2013-06-14T08:33:58Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/54207 en Nanyang Technological University 44 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Tan, Justin Yuda.
A tactical grade MEMS gyroscope
description This report illustrates the research project of a tactical grade Micro Electrical Mechanical Systems (MEMS) gyroscope through simulation and presents the results of the data. The gyroscope is used to measure the angular rotation and around their sensitive axes. MEMS gyroscope uses the Corolis effect to measure the angular rate. This technology is growing and it is being used in many applications such as image stabilisation in digital cameras, tacking the orientation when GPS signal is lost and ect. The objective of this project is to develop ideas and moderate performance gyroscope using MEMS micro fabrications which will improve the current performance of all existing MEMS gyroscopes. The result of this research carries out aims to increase the Quality-effective Factor, Resonant Frequency and low Brownian Noise Floor of the MEMS gyroscope. With an improve quality factor, the gyroscope will be more accurate. By exploring the design of the tuning fork gyroscope, a decision will be made to best satisfy the requirements of this project. With the design in mind, the report will illustrate the process of getting a improved MEMS through the use of a Conventorware Architect software. The Conventorware Architect software has shown how we achieved the target specifications in both Quality Factor and Resonant Frequency.
author2 Poenar Daniel Puiu
author_facet Poenar Daniel Puiu
Tan, Justin Yuda.
format Final Year Project
author Tan, Justin Yuda.
author_sort Tan, Justin Yuda.
title A tactical grade MEMS gyroscope
title_short A tactical grade MEMS gyroscope
title_full A tactical grade MEMS gyroscope
title_fullStr A tactical grade MEMS gyroscope
title_full_unstemmed A tactical grade MEMS gyroscope
title_sort tactical grade mems gyroscope
publishDate 2013
url http://hdl.handle.net/10356/54207
_version_ 1772825813584969728