A real-time multiple human face detection and recognition based on scalable vocabulary tree

Human face detection and recognition have many applications such as camera surveillance, biometric applications, and human computer interface. Automatic human face detection and recognition from images is a challenging task due to the uncertainty in cluttered background, view point, illumin...

Full description

Saved in:
Bibliographic Details
Main Author: Yang, Wen
Other Authors: Er Meng Joo
Format: Final Year Project
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10356/55118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-55118
record_format dspace
spelling sg-ntu-dr.10356-551182023-07-07T16:04:39Z A real-time multiple human face detection and recognition based on scalable vocabulary tree Yang, Wen Er Meng Joo School of Electrical and Electronic Engineering DRNTU::Engineering Human face detection and recognition have many applications such as camera surveillance, biometric applications, and human computer interface. Automatic human face detection and recognition from images is a challenging task due to the uncertainty in cluttered background, view point, illumination, occlusion, and facial aging. An e cient implementation of real time face detection has been done. Face detection is based on sophisticated lters. The detection accuracy of the state-of-the-art object detection algorithms is rather high. However, the computational cost is also high. In this work, the face lter is trained o ine from the available source code of general object detecion algorithm. The main idea of the algorithm is object detection based on mixtures of multiscale deformable part models. Once the face lter is trained, it is used in the C code for real-time video surveillance system. Using this system, webcam can capture face of humans in realtime. The face detection accuracy is tested to be over 90% in 2 seconds. In contrast, using the original MATLAB code, the detection accuracy is the same while the detection time ranges from 15s to 30s. An e ective algorithm for real time face recognition has been applied. According to comprehensive survey of the recognition methods, it is found that Scalable Vocabulary Tree (SVT) is e ective in general image recognition. As compared to general scene images, which contain generic topics such as outdoor, o ce, and sky, face images usually contain speci c face parts such as eye, nose and mouth. The implementation is carried out in MATLAB since the algorithm is rather e cient. The face detection accuracy is also roughly 90% in less than 0.5s.In addition, new face images have been collected. In order to test the performance of face detection, the author has been using the webcam to capture her face based on the developed software since half year ago. The capturing conditions varies, including di erent lightings, angles, occlusions, makeups, hairstyles, glasses, etc. Then the detected faces are recognized using the face image databases. Bachelor of Engineering 2013-12-18T08:32:54Z 2013-12-18T08:32:54Z 2013 2013 Final Year Project (FYP) http://hdl.handle.net/10356/55118 en Nanyang Technological University 69 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Yang, Wen
A real-time multiple human face detection and recognition based on scalable vocabulary tree
description Human face detection and recognition have many applications such as camera surveillance, biometric applications, and human computer interface. Automatic human face detection and recognition from images is a challenging task due to the uncertainty in cluttered background, view point, illumination, occlusion, and facial aging. An e cient implementation of real time face detection has been done. Face detection is based on sophisticated lters. The detection accuracy of the state-of-the-art object detection algorithms is rather high. However, the computational cost is also high. In this work, the face lter is trained o ine from the available source code of general object detecion algorithm. The main idea of the algorithm is object detection based on mixtures of multiscale deformable part models. Once the face lter is trained, it is used in the C code for real-time video surveillance system. Using this system, webcam can capture face of humans in realtime. The face detection accuracy is tested to be over 90% in 2 seconds. In contrast, using the original MATLAB code, the detection accuracy is the same while the detection time ranges from 15s to 30s. An e ective algorithm for real time face recognition has been applied. According to comprehensive survey of the recognition methods, it is found that Scalable Vocabulary Tree (SVT) is e ective in general image recognition. As compared to general scene images, which contain generic topics such as outdoor, o ce, and sky, face images usually contain speci c face parts such as eye, nose and mouth. The implementation is carried out in MATLAB since the algorithm is rather e cient. The face detection accuracy is also roughly 90% in less than 0.5s.In addition, new face images have been collected. In order to test the performance of face detection, the author has been using the webcam to capture her face based on the developed software since half year ago. The capturing conditions varies, including di erent lightings, angles, occlusions, makeups, hairstyles, glasses, etc. Then the detected faces are recognized using the face image databases.
author2 Er Meng Joo
author_facet Er Meng Joo
Yang, Wen
format Final Year Project
author Yang, Wen
author_sort Yang, Wen
title A real-time multiple human face detection and recognition based on scalable vocabulary tree
title_short A real-time multiple human face detection and recognition based on scalable vocabulary tree
title_full A real-time multiple human face detection and recognition based on scalable vocabulary tree
title_fullStr A real-time multiple human face detection and recognition based on scalable vocabulary tree
title_full_unstemmed A real-time multiple human face detection and recognition based on scalable vocabulary tree
title_sort real-time multiple human face detection and recognition based on scalable vocabulary tree
publishDate 2013
url http://hdl.handle.net/10356/55118
_version_ 1772827527776043008