Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites

G-quadruplex is a family of non-canonical DNA which has been gaining popularity due to mounting evidence of its biological function, promising therapeutic prospect and potential application in nanotechnology. These four-stranded polymorphic structures are formed by G-rich nucleic acid sequences. As...

Full description

Saved in:
Bibliographic Details
Main Author: Adrian, Michael
Other Authors: Phan Anh Tuan
Format: Theses and Dissertations
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/55335
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-55335
record_format dspace
spelling sg-ntu-dr.10356-553352023-02-28T23:45:14Z Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites Adrian, Michael Phan Anh Tuan School of Physical and Mathematical Sciences DRNTU::Science::Biological sciences::Biophysics G-quadruplex is a family of non-canonical DNA which has been gaining popularity due to mounting evidence of its biological function, promising therapeutic prospect and potential application in nanotechnology. These four-stranded polymorphic structures are formed by G-rich nucleic acid sequences. As part of genome, G-quadruplex-forming minisatellites are associated with high degree of polymorphism and have been shown to interact with specific protein and ligand. This research addresses conformational diversity originated from human minisatellite sequences through combination of biophysical techniques. Several G-quadruplexes are identified from mutable CEB1 sequence. In particular, a dimeric G-quadruplex with unique dynamic property is investigated thoroughly. G-quadruplex solution structures from CEB1 and CEB25 sequences are elucidated using NMR spectroscopy. Moreover, the formation of monomorphic G-quadruplexes on a long single-stranded CEB25 sequence is demonstrated. Subsequently, the role of these G-quadruplexes towards genomic instability is examined in model organism yeast: (i) multiple G-quadruplexes are shown to destabilize CEB1 allele in a cooperative manner and (ii) G-quadruplex loop length and thermal stability are important to the instability of CEB25 allele. In addition, the study of local motions occurring within G-quadruplex molecules is initiated on known structures, highlighting the effect of base stacking and ligand binding on rotational dynamics of amino group. The findings presented in this thesis add to the basic understanding of the formation of multiple G-quadruplexes within a nucleic acid sequence and, coupled with mutagenesis study, may provide insights on the molecular mechanism of G-quadruplex interaction with endogenous protein and stabilizing ligand. ​Doctor of Philosophy (SPMS) 2014-02-11T04:41:38Z 2014-02-11T04:41:38Z 2013 2013 Thesis http://hdl.handle.net/10356/55335 en 133 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences::Biophysics
spellingShingle DRNTU::Science::Biological sciences::Biophysics
Adrian, Michael
Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
description G-quadruplex is a family of non-canonical DNA which has been gaining popularity due to mounting evidence of its biological function, promising therapeutic prospect and potential application in nanotechnology. These four-stranded polymorphic structures are formed by G-rich nucleic acid sequences. As part of genome, G-quadruplex-forming minisatellites are associated with high degree of polymorphism and have been shown to interact with specific protein and ligand. This research addresses conformational diversity originated from human minisatellite sequences through combination of biophysical techniques. Several G-quadruplexes are identified from mutable CEB1 sequence. In particular, a dimeric G-quadruplex with unique dynamic property is investigated thoroughly. G-quadruplex solution structures from CEB1 and CEB25 sequences are elucidated using NMR spectroscopy. Moreover, the formation of monomorphic G-quadruplexes on a long single-stranded CEB25 sequence is demonstrated. Subsequently, the role of these G-quadruplexes towards genomic instability is examined in model organism yeast: (i) multiple G-quadruplexes are shown to destabilize CEB1 allele in a cooperative manner and (ii) G-quadruplex loop length and thermal stability are important to the instability of CEB25 allele. In addition, the study of local motions occurring within G-quadruplex molecules is initiated on known structures, highlighting the effect of base stacking and ligand binding on rotational dynamics of amino group. The findings presented in this thesis add to the basic understanding of the formation of multiple G-quadruplexes within a nucleic acid sequence and, coupled with mutagenesis study, may provide insights on the molecular mechanism of G-quadruplex interaction with endogenous protein and stabilizing ligand.
author2 Phan Anh Tuan
author_facet Phan Anh Tuan
Adrian, Michael
format Theses and Dissertations
author Adrian, Michael
author_sort Adrian, Michael
title Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
title_short Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
title_full Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
title_fullStr Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
title_full_unstemmed Structures and dynamics of g-quadruplexes formed by human CEB1 and CEB25 minisatellites
title_sort structures and dynamics of g-quadruplexes formed by human ceb1 and ceb25 minisatellites
publishDate 2014
url http://hdl.handle.net/10356/55335
_version_ 1759855472126459904