Designable yolk-shell nanoparticle@MOF petalous heterostructures

Controlled integration of nanoparticles (NPs) and metal-organic frameworks (MOFs) is crucial for expanding the applications of MOFs-based materials. In this study, the facile encapsulation of pre-synthesized NPs into carboxylic acid-based MOFs using NPs@metal oxide core-shell nanostructures as the s...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Yayuan
Other Authors: Hui Siu Cheung
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/55682
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-55682
record_format dspace
spelling sg-ntu-dr.10356-556822023-03-04T15:41:40Z Designable yolk-shell nanoparticle@MOF petalous heterostructures Liu, Yayuan Hui Siu Cheung School of Materials Science and Engineering Huo Fengwei DRNTU::Engineering Controlled integration of nanoparticles (NPs) and metal-organic frameworks (MOFs) is crucial for expanding the applications of MOFs-based materials. In this study, the facile encapsulation of pre-synthesized NPs into carboxylic acid-based MOFs using NPs@metal oxide core-shell nanostructures as the self-template is demonstrated. The shell dissolved gradually in the mildly acidic growth solution created due to the dissociation of the ligands and thus, directing the growth of the MOFs crystals by providing metal ions. With the protection of the metal oxide shell, various NPs (Au NPs, Au nanorods, Pd nanocubes, Pt-on-Au dendritic NPs) could be encapsulated easily without being aggregated or dissolved in the reaction mixture. Importantly, instead of forming the exact replicate of the self-template, the obtained NP@MOF heterostructures exhibited a yolk-shell morphology with a central cavity and a certain degree of mesoporosity. The formation of the well-defined yolk-shell structure was demonstrated to be dependent on both the choice of the solvent and the dissolution behavior of the metal oxide shell. Finally, the obtained heterostructures were employed for heterogeneous catalysis, in which the size-selectivity of the MOFs shell was perfectly retained. Bachelor of Engineering (Materials Engineering) 2014-03-21T01:47:20Z 2014-03-21T01:47:20Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/55682 en Nanyang Technological University 33 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Liu, Yayuan
Designable yolk-shell nanoparticle@MOF petalous heterostructures
description Controlled integration of nanoparticles (NPs) and metal-organic frameworks (MOFs) is crucial for expanding the applications of MOFs-based materials. In this study, the facile encapsulation of pre-synthesized NPs into carboxylic acid-based MOFs using NPs@metal oxide core-shell nanostructures as the self-template is demonstrated. The shell dissolved gradually in the mildly acidic growth solution created due to the dissociation of the ligands and thus, directing the growth of the MOFs crystals by providing metal ions. With the protection of the metal oxide shell, various NPs (Au NPs, Au nanorods, Pd nanocubes, Pt-on-Au dendritic NPs) could be encapsulated easily without being aggregated or dissolved in the reaction mixture. Importantly, instead of forming the exact replicate of the self-template, the obtained NP@MOF heterostructures exhibited a yolk-shell morphology with a central cavity and a certain degree of mesoporosity. The formation of the well-defined yolk-shell structure was demonstrated to be dependent on both the choice of the solvent and the dissolution behavior of the metal oxide shell. Finally, the obtained heterostructures were employed for heterogeneous catalysis, in which the size-selectivity of the MOFs shell was perfectly retained.
author2 Hui Siu Cheung
author_facet Hui Siu Cheung
Liu, Yayuan
format Final Year Project
author Liu, Yayuan
author_sort Liu, Yayuan
title Designable yolk-shell nanoparticle@MOF petalous heterostructures
title_short Designable yolk-shell nanoparticle@MOF petalous heterostructures
title_full Designable yolk-shell nanoparticle@MOF petalous heterostructures
title_fullStr Designable yolk-shell nanoparticle@MOF petalous heterostructures
title_full_unstemmed Designable yolk-shell nanoparticle@MOF petalous heterostructures
title_sort designable yolk-shell nanoparticle@mof petalous heterostructures
publishDate 2014
url http://hdl.handle.net/10356/55682
_version_ 1759857204256571392