TiO2 nanocomposite photocatalysts for water disinfection and decontamination under solar irradiation

A group of novel TiO2 nanocomposite photocatalysts were developed by combining TiO2 nanofibers/nanorods with Ag nanoparticles, graphene oxide (GO) sheets, and visible light photocatalyst Ag3PO4. Generally these nanocomposite photocatalysts were highly efficient for disinfec...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Lei
Other Authors: Sun Delai, Darren
Format: Theses and Dissertations
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/59532
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A group of novel TiO2 nanocomposite photocatalysts were developed by combining TiO2 nanofibers/nanorods with Ag nanoparticles, graphene oxide (GO) sheets, and visible light photocatalyst Ag3PO4. Generally these nanocomposite photocatalysts were highly efficient for disinfection of E.coli and decontamination of organic pollutants (i.e. methylene blue, AO 7, and phenol) under solar/visible light irradiation. Depositing Ag nanoparticles on electrospun TiO2 nanofibers could achieve concurrent membrane filtration and enhanced photocatalytic disinfection/decontamination activities under solar irradiation compared with TiO2 nanofibers and P25. The synergistic effects of coulping Ag nanoparticles, TiO2 nanorods and large GO sheets resulted in further improved photocatalytic activities of the GO-TiO2-Ag nanocomposites. Introduing visible light photocatalyst Ag3PO4 to form GO-Ag3PO4 nanocomposites achieved much higher photocatalytic activities compared with Ag/TiO2 or GO-TiO2-Ag nanocomposites. The mechanisms behind each were investigated to optimize the strategy of the processes. This study is of great significance in providing opportunities r cost effectively water purification applications.