Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group

The use of transition metals as catalyst in mediating organic reactions is inevitable. In the first part of the thesis, we discussed thoroughly the usage of cheap and environmentally friendly iron(III) catalyst in promoting reactions of (i) benzylic acetates with organosilanes; (ii) reductive dehydr...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chan, Li Yan
مؤلفون آخرون: Kim Sung Gak
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2014
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/59859
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
id sg-ntu-dr.10356-59859
record_format dspace
spelling sg-ntu-dr.10356-598592023-02-28T23:59:19Z Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group Chan, Li Yan Kim Sung Gak School of Physical and Mathematical Sciences DRNTU::Science::Chemistry::Organic chemistry::Organic synthesis The use of transition metals as catalyst in mediating organic reactions is inevitable. In the first part of the thesis, we discussed thoroughly the usage of cheap and environmentally friendly iron(III) catalyst in promoting reactions of (i) benzylic acetates with organosilanes; (ii) reductive dehydroxylation of benzylic alcohols with polymethylhydrosiloxane; and (iii) the Conia-ene cyclization of 2-alkynic 1,3-dicarbonyl compounds. Ample works were done which demonstrated the efficiency of iron catalyst in these areas of organic synthesis chemistry. In the second part, a novel mono-phosphoric acid directing group was used to facilitate palladium(II)-catalyzed C-H functionalization reactions, that occurred in high selectivity at the ortho-position. The phosphate directing ability was proven in (i) ortho-alkenylation; (ii) ortho-arylation; and (iii) ortho-acetoxylation of aryl hydrogen phosphates. The palladium catalytic system could tolerate a broad range of functional groups, hence making this an attractive method to synthesis valuable functionalized arenes, which are common motifs of natural products. DOCTOR OF PHILOSOPHY (SPMS) 2014-05-16T03:06:11Z 2014-05-16T03:06:11Z 2014 2014 Thesis Chan, L. Y. (2013). Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/59859 10.32657/10356/59859 en 186 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Chemistry::Organic chemistry::Organic synthesis
spellingShingle DRNTU::Science::Chemistry::Organic chemistry::Organic synthesis
Chan, Li Yan
Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
description The use of transition metals as catalyst in mediating organic reactions is inevitable. In the first part of the thesis, we discussed thoroughly the usage of cheap and environmentally friendly iron(III) catalyst in promoting reactions of (i) benzylic acetates with organosilanes; (ii) reductive dehydroxylation of benzylic alcohols with polymethylhydrosiloxane; and (iii) the Conia-ene cyclization of 2-alkynic 1,3-dicarbonyl compounds. Ample works were done which demonstrated the efficiency of iron catalyst in these areas of organic synthesis chemistry. In the second part, a novel mono-phosphoric acid directing group was used to facilitate palladium(II)-catalyzed C-H functionalization reactions, that occurred in high selectivity at the ortho-position. The phosphate directing ability was proven in (i) ortho-alkenylation; (ii) ortho-arylation; and (iii) ortho-acetoxylation of aryl hydrogen phosphates. The palladium catalytic system could tolerate a broad range of functional groups, hence making this an attractive method to synthesis valuable functionalized arenes, which are common motifs of natural products.
author2 Kim Sung Gak
author_facet Kim Sung Gak
Chan, Li Yan
format Theses and Dissertations
author Chan, Li Yan
author_sort Chan, Li Yan
title Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
title_short Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
title_full Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
title_fullStr Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
title_full_unstemmed Part I: Iron (III)-catalyzed reactions of benzylic analogs with organosilanes & Conia-ene cyclization. Part II: Palladium (II)-catalyzed C-H functionalizations using mono-phosphoric acid directing group
title_sort part i: iron (iii)-catalyzed reactions of benzylic analogs with organosilanes & conia-ene cyclization. part ii: palladium (ii)-catalyzed c-h functionalizations using mono-phosphoric acid directing group
publishDate 2014
url https://hdl.handle.net/10356/59859
_version_ 1759858022056722432