Stochastic structural dynamic model updating and reliability prediction of a building using vibration data

Structural dynamics model updating can be defined as the adjustment of an existing analytical model using experimental data so that the model will more accurately reflect the dynamic behaviour of a structure of interest. Since model updating has a variety of applications in structural health monitor...

Full description

Saved in:
Bibliographic Details
Main Author: Chew, Xiao Yu
Other Authors: School of Civil and Environmental Engineering
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/60010
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-60010
record_format dspace
spelling sg-ntu-dr.10356-600102023-03-03T16:58:41Z Stochastic structural dynamic model updating and reliability prediction of a building using vibration data Chew, Xiao Yu School of Civil and Environmental Engineering Cheung Sai Hung DRNTU::Engineering Structural dynamics model updating can be defined as the adjustment of an existing analytical model using experimental data so that the model will more accurately reflect the dynamic behaviour of a structure of interest. Since model updating has a variety of applications in structural health monitoring, control and response prediction, it is also essential to consider all uncertainties and errors associated when constructing the predictive model. Thus the first objective of this report is to carry out model updating of dynamic structures so as to enhance the matching between experimental data and the corresponding model output. A Bayesian model updating approach based on Gibbs Sampler (GS) is adopted to provide a robust and rigorous framework for this application. To evaluate a system’s performance under dynamic excitations, all the uncertainties involved have to be performed using stochastic system analysis. Hence, evaluating the robust failure probability (complementary of robust reliability) of the system is a very important part of such stochastic system analysis. The word ‘failure’ used here refers to unsatisfactory performance of the system. System data will be used for the updating of robust failure probability that any particular response (e.g., inter-storey drift, floor acceleration) of a linear structural dynamic system exceeds a specified threshold during the time when the system is subjected to future Gaussian dynamic excitation. Thus the second objective of this report is to present a general framework for updating the reliability of a system using modal data. The effectiveness and efficiency of the proposed methodology will be illustrated using two examples: a 4-DOF mechanical system and the benchmark structure from Phase II of the IASC-ASCE benchmark problem in structural health monitoring. Bachelor of Engineering (Civil) 2014-05-22T01:34:04Z 2014-05-22T01:34:04Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/60010 en Nanyang Technological University 61 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Chew, Xiao Yu
Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
description Structural dynamics model updating can be defined as the adjustment of an existing analytical model using experimental data so that the model will more accurately reflect the dynamic behaviour of a structure of interest. Since model updating has a variety of applications in structural health monitoring, control and response prediction, it is also essential to consider all uncertainties and errors associated when constructing the predictive model. Thus the first objective of this report is to carry out model updating of dynamic structures so as to enhance the matching between experimental data and the corresponding model output. A Bayesian model updating approach based on Gibbs Sampler (GS) is adopted to provide a robust and rigorous framework for this application. To evaluate a system’s performance under dynamic excitations, all the uncertainties involved have to be performed using stochastic system analysis. Hence, evaluating the robust failure probability (complementary of robust reliability) of the system is a very important part of such stochastic system analysis. The word ‘failure’ used here refers to unsatisfactory performance of the system. System data will be used for the updating of robust failure probability that any particular response (e.g., inter-storey drift, floor acceleration) of a linear structural dynamic system exceeds a specified threshold during the time when the system is subjected to future Gaussian dynamic excitation. Thus the second objective of this report is to present a general framework for updating the reliability of a system using modal data. The effectiveness and efficiency of the proposed methodology will be illustrated using two examples: a 4-DOF mechanical system and the benchmark structure from Phase II of the IASC-ASCE benchmark problem in structural health monitoring.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Chew, Xiao Yu
format Final Year Project
author Chew, Xiao Yu
author_sort Chew, Xiao Yu
title Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
title_short Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
title_full Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
title_fullStr Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
title_full_unstemmed Stochastic structural dynamic model updating and reliability prediction of a building using vibration data
title_sort stochastic structural dynamic model updating and reliability prediction of a building using vibration data
publishDate 2014
url http://hdl.handle.net/10356/60010
_version_ 1759856321522302976