DIY bioprinter (platform)
A lack of transplantable organs currently available poses many problems to patients awaiting transplant. As such, ways to increase the supply of transplantable organs have been studied but the proposed solutions have their own limitations. Thus, this led to the idea of creating transplantable organs...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/60237 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-60237 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-602372023-03-03T15:40:34Z DIY bioprinter (platform) Poon, Ling Jun Xu Chenjie School of Chemical and Biomedical Engineering DRNTU::Engineering A lack of transplantable organs currently available poses many problems to patients awaiting transplant. As such, ways to increase the supply of transplantable organs have been studied but the proposed solutions have their own limitations. Thus, this led to the idea of creating transplantable organs through bioprinting technology. However, commercially available bioprinters are very expensive and may not be readily accessible for research purposes. Hence, this led to the DIY bioprinter project which aims to develop a low cost solution for a functional bioprinter. The DIY bioprinter was created based on inkjet technology and successfully assembled at a cost of about $189 which is much lower than our initial budget. Components of the DIY bioprinter includes the Arduino board, Inkshield set, Stepper motors and Stepper motor drivers, and was readily assembled with relative ease. Initial testing of the bioprinter was conducted to demonstrate functional operation. Experiments to print out alginate hydrogels were conducted and we have successfully determined both the optimal concentrations that would produce hydrogels with good conformation, and the degradation properties of bioprinted hydrogels. Experimental results showed that the range of 1.1% to 2% concentration works best for low viscosity alginates while 1% concentration works best for high viscosity alginates. Degradation properties of bioprinted alginate hydrogels are similar to those found in literature. Thus, experimental results suggest the potential use of the DIY bioprinter in future biological applications. Bachelor of Engineering (Chemical and Biomolecular Engineering) 2014-05-26T03:32:53Z 2014-05-26T03:32:53Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/60237 en Nanyang Technological University 85 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering |
spellingShingle |
DRNTU::Engineering Poon, Ling Jun DIY bioprinter (platform) |
description |
A lack of transplantable organs currently available poses many problems to patients awaiting transplant. As such, ways to increase the supply of transplantable organs have been studied but the proposed solutions have their own limitations. Thus, this led to the idea of creating transplantable organs through bioprinting technology. However, commercially available bioprinters are very expensive and may not be readily accessible for research purposes. Hence, this led to the DIY bioprinter project which aims to develop a low cost solution for a functional bioprinter.
The DIY bioprinter was created based on inkjet technology and successfully assembled at a cost of about $189 which is much lower than our initial budget. Components of the DIY bioprinter includes the Arduino board, Inkshield set, Stepper motors and Stepper motor drivers, and was readily assembled with relative ease. Initial testing of the bioprinter was conducted to demonstrate functional operation. Experiments to print out alginate hydrogels were conducted and we have successfully determined both the optimal concentrations that would produce hydrogels with good conformation, and the degradation properties of bioprinted hydrogels. Experimental results showed that the range of 1.1% to 2% concentration works best for low viscosity alginates while 1% concentration works best for high viscosity alginates. Degradation properties of bioprinted alginate hydrogels are similar to those found in literature. Thus, experimental results suggest the potential use of the DIY bioprinter in future biological applications. |
author2 |
Xu Chenjie |
author_facet |
Xu Chenjie Poon, Ling Jun |
format |
Final Year Project |
author |
Poon, Ling Jun |
author_sort |
Poon, Ling Jun |
title |
DIY bioprinter (platform) |
title_short |
DIY bioprinter (platform) |
title_full |
DIY bioprinter (platform) |
title_fullStr |
DIY bioprinter (platform) |
title_full_unstemmed |
DIY bioprinter (platform) |
title_sort |
diy bioprinter (platform) |
publishDate |
2014 |
url |
http://hdl.handle.net/10356/60237 |
_version_ |
1759857863965016064 |