An experimental investigation of the SR-30 turbojet engine

The existing SR-30 turbo-jet engine and NTU test rig were investigated in the study to establish full understanding on the test rig setup, data acquisition system, measurement system, performance parameters of SR-30 and the corresponding thermodynamic behaviour. Energetic and exergetic analysis were...

Full description

Saved in:
Bibliographic Details
Main Author: Hew, Chyi Chyi
Other Authors: School of Mechanical and Aerospace Engineering
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/60390
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The existing SR-30 turbo-jet engine and NTU test rig were investigated in the study to establish full understanding on the test rig setup, data acquisition system, measurement system, performance parameters of SR-30 and the corresponding thermodynamic behaviour. Energetic and exergetic analysis were performed on various parameters obtained from the steady state engine test data, for an operation range of 50,000, 60,000, 70,000 and 80,000 RPMs. The overall thermal and exergetic efficiencies of SR-30 mini jet engine achieved 0.9% – 4.19% and 0.8% – 3.91% respectively across the range of operating RPMs. Based on exergetic analysis, combustor is identified as the main source of losses among the main engine components, with the lowest exergetic efficiency of 27.3% – 50.5% and the highest exergy destruction rate of 59.5% – 76.7% of total exergy destruction, across the range of operational RPMs. Cross comparison of the local test data with factory run data provided by MinilabTM shows lower components efficiencies and overall engine thermal efficiency in factory run result. The discrepancies could be due to individual variation in engine and potential measurement errors due to different experimental setup.