Design and development of adsorption desalination system

Waste heat driven adsorption desalination systems offer great potential in solving the shortage of fresh water. This report presents the design and development of the new two-bed adsorption desalination system as well as the design of the four-bed non-regenerative adsorption desalination system....

Full description

Saved in:
Bibliographic Details
Main Author: Chua, Kheng Lim
Other Authors: Leong Kai Choong
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/60972
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-60972
record_format dspace
spelling sg-ntu-dr.10356-609722023-03-04T18:43:03Z Design and development of adsorption desalination system Chua, Kheng Lim Leong Kai Choong School of Mechanical and Aerospace Engineering Anutosh Chakraborty DRNTU::Engineering::Mechanical engineering Waste heat driven adsorption desalination systems offer great potential in solving the shortage of fresh water. This report presents the design and development of the new two-bed adsorption desalination system as well as the design of the four-bed non-regenerative adsorption desalination system. The two-bed adsorption desalination system is designed based on the 300-W design capacity. The temperature difference of the hot/cool water inlets and outlets are assumed to maintain at 5℃ at steady state conditions to facilitate the designing of the adsorption system. For the automatic controls of various valves, a logic controller is used. The programming languages of the controller, structured text and ladder logic, are also explained in details. Then, the experimental investigation are discussed. The initial trial runs (200 s, 400 s and 600 s preheating) and its preliminary results show that 600s/1000s cycle time gives the lowest evaporator temperature of 17℃. And the variation of preheating time does not impact on the water production rate. Finally, the design calculations of the heat exchangers for the four-bed adsorption desalination are shown in details. The designs are based on 12-kW and 8-kW cooling capacities for the two evaporators. Two methods in determining the length of heat exchanger are employed in the design calculations, namely using copper pipe’s heat transfer coefficient and using overall heat transfer coefficient. The various components are then 3D modelled using Solidworks. Bachelor of Engineering (Mechanical Engineering) 2014-06-03T08:55:14Z 2014-06-03T08:55:14Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/60972 en Nanyang Technological University 94 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Chua, Kheng Lim
Design and development of adsorption desalination system
description Waste heat driven adsorption desalination systems offer great potential in solving the shortage of fresh water. This report presents the design and development of the new two-bed adsorption desalination system as well as the design of the four-bed non-regenerative adsorption desalination system. The two-bed adsorption desalination system is designed based on the 300-W design capacity. The temperature difference of the hot/cool water inlets and outlets are assumed to maintain at 5℃ at steady state conditions to facilitate the designing of the adsorption system. For the automatic controls of various valves, a logic controller is used. The programming languages of the controller, structured text and ladder logic, are also explained in details. Then, the experimental investigation are discussed. The initial trial runs (200 s, 400 s and 600 s preheating) and its preliminary results show that 600s/1000s cycle time gives the lowest evaporator temperature of 17℃. And the variation of preheating time does not impact on the water production rate. Finally, the design calculations of the heat exchangers for the four-bed adsorption desalination are shown in details. The designs are based on 12-kW and 8-kW cooling capacities for the two evaporators. Two methods in determining the length of heat exchanger are employed in the design calculations, namely using copper pipe’s heat transfer coefficient and using overall heat transfer coefficient. The various components are then 3D modelled using Solidworks.
author2 Leong Kai Choong
author_facet Leong Kai Choong
Chua, Kheng Lim
format Final Year Project
author Chua, Kheng Lim
author_sort Chua, Kheng Lim
title Design and development of adsorption desalination system
title_short Design and development of adsorption desalination system
title_full Design and development of adsorption desalination system
title_fullStr Design and development of adsorption desalination system
title_full_unstemmed Design and development of adsorption desalination system
title_sort design and development of adsorption desalination system
publishDate 2014
url http://hdl.handle.net/10356/60972
_version_ 1759853424268017664