Pairwise copula cyclic graphical model for spatial extremes modeling

Research on extreme events modeling has grown in prominence due to the destructive influence and increasing occurrence rate in recent years. In this work, we focus on spatial extremes, where the extreme values measured at different locations are jointly modeled. The resulting model can, for example,...

Full description

Saved in:
Bibliographic Details
Main Author: Zhu, Junting
Other Authors: Justin Dauwels
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/61260
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61260
record_format dspace
spelling sg-ntu-dr.10356-612602023-07-07T16:15:00Z Pairwise copula cyclic graphical model for spatial extremes modeling Zhu, Junting Justin Dauwels School of Electrical and Electronic Engineering DRNTU::Engineering::Computer science and engineering::Mathematics of computing::Probability and statistics Research on extreme events modeling has grown in prominence due to the destructive influence and increasing occurrence rate in recent years. In this work, we focus on spatial extremes, where the extreme values measured at different locations are jointly modeled. The resulting model can, for example, be used to describe the occurrence and measure the risk of catastrophes, such as hurricanes and floods in a spatial domain. Moreover, joint analysis of spatial extremes has the potential to forecast the likelihood of extreme events in one location given that has happened elsewhere. In the proposed model, we leverage the framework of graphical models, which enables compact modeling and efficient inference for large-scale data. We further employ pairwise copulas as the building blocks of the graphical model in order to capture the complex dependence between extreme events. The resulting pairwise copula cyclic graphical model (PCCGM) can therefore flexibly capture the spatial dependence, including the tail parts of the distributions. Variational Expectation Maximization (EM) algorithm is used to learn the model parameters. By exploiting the particular structure of the proposed model, the proposed algorithm scales gracefully with the dimension of the model. In addition, we develop a sampling algorithm to draw extreme-value samples from the learnt model. Generating extreme-value samples is crucial in practice since extreme events are rare by definition and only the observed samples are insufficient for statistical analysis. Numerical results show that the learning algorithm can reliably estimate the model parameters. Furthermore, the proposed can preserve tail dependence while fitting the data well. Bachelor of Engineering 2014-06-06T07:28:48Z 2014-06-06T07:28:48Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/61260 en Nanyang Technological University 98 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Computer science and engineering::Mathematics of computing::Probability and statistics
spellingShingle DRNTU::Engineering::Computer science and engineering::Mathematics of computing::Probability and statistics
Zhu, Junting
Pairwise copula cyclic graphical model for spatial extremes modeling
description Research on extreme events modeling has grown in prominence due to the destructive influence and increasing occurrence rate in recent years. In this work, we focus on spatial extremes, where the extreme values measured at different locations are jointly modeled. The resulting model can, for example, be used to describe the occurrence and measure the risk of catastrophes, such as hurricanes and floods in a spatial domain. Moreover, joint analysis of spatial extremes has the potential to forecast the likelihood of extreme events in one location given that has happened elsewhere. In the proposed model, we leverage the framework of graphical models, which enables compact modeling and efficient inference for large-scale data. We further employ pairwise copulas as the building blocks of the graphical model in order to capture the complex dependence between extreme events. The resulting pairwise copula cyclic graphical model (PCCGM) can therefore flexibly capture the spatial dependence, including the tail parts of the distributions. Variational Expectation Maximization (EM) algorithm is used to learn the model parameters. By exploiting the particular structure of the proposed model, the proposed algorithm scales gracefully with the dimension of the model. In addition, we develop a sampling algorithm to draw extreme-value samples from the learnt model. Generating extreme-value samples is crucial in practice since extreme events are rare by definition and only the observed samples are insufficient for statistical analysis. Numerical results show that the learning algorithm can reliably estimate the model parameters. Furthermore, the proposed can preserve tail dependence while fitting the data well.
author2 Justin Dauwels
author_facet Justin Dauwels
Zhu, Junting
format Final Year Project
author Zhu, Junting
author_sort Zhu, Junting
title Pairwise copula cyclic graphical model for spatial extremes modeling
title_short Pairwise copula cyclic graphical model for spatial extremes modeling
title_full Pairwise copula cyclic graphical model for spatial extremes modeling
title_fullStr Pairwise copula cyclic graphical model for spatial extremes modeling
title_full_unstemmed Pairwise copula cyclic graphical model for spatial extremes modeling
title_sort pairwise copula cyclic graphical model for spatial extremes modeling
publishDate 2014
url http://hdl.handle.net/10356/61260
_version_ 1772827623500546048