The effect of clap-and-fling on two-winged flapping flight

There is great interest in the field of bio-mimicry to imitate the flapping motion of insect wings. These naturally occurring systems have been perfected over millennia of evolution and therefore provide an excellent reference point for Micro Air Vehicle (MAV) propulsion. Insect flapping wi...

Full description

Saved in:
Bibliographic Details
Main Author: Subramanian, Arvind
Other Authors: School of Mechanical and Aerospace Engineering
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/61373
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61373
record_format dspace
spelling sg-ntu-dr.10356-613732023-03-04T19:08:21Z The effect of clap-and-fling on two-winged flapping flight Subramanian, Arvind School of Mechanical and Aerospace Engineering Lau Gih Keong DRNTU::Engineering::Aeronautical engineering::Aerodynamics There is great interest in the field of bio-mimicry to imitate the flapping motion of insect wings. These naturally occurring systems have been perfected over millennia of evolution and therefore provide an excellent reference point for Micro Air Vehicle (MAV) propulsion. Insect flapping wings come in many varieties and with several nuances. One such specification is the Clap-and-Fling (CF) motion wherein the wings meet at the highest upstroke point. This mechanism is hypothesised to produce more thrust, which is highly desirable. The focus of this project has therefore been on verifying the validity of this proposition. Firstly, five prototypes of equal dimensions as well as 3 pairs of wings of varying size were fabricated. A comprehensive experiment was then conducted to test these prototypes across varying wing sizes, with and without the CF condition. The results of these tests were analysed and collated into simple graphs against different variables such as power and frequency. It has been found that the CF condition does indeed increase the thrust produced significantly and that it also reduces power consumption in the process. The positive findings of this experiment therefore pave the way for further testing and implementation into CF as a viable means of thrust maximisation. Bachelor of Engineering (Aerospace Engineering) 2014-06-09T07:49:14Z 2014-06-09T07:49:14Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/61373 en Nanyang Technological University 69 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Aeronautical engineering::Aerodynamics
spellingShingle DRNTU::Engineering::Aeronautical engineering::Aerodynamics
Subramanian, Arvind
The effect of clap-and-fling on two-winged flapping flight
description There is great interest in the field of bio-mimicry to imitate the flapping motion of insect wings. These naturally occurring systems have been perfected over millennia of evolution and therefore provide an excellent reference point for Micro Air Vehicle (MAV) propulsion. Insect flapping wings come in many varieties and with several nuances. One such specification is the Clap-and-Fling (CF) motion wherein the wings meet at the highest upstroke point. This mechanism is hypothesised to produce more thrust, which is highly desirable. The focus of this project has therefore been on verifying the validity of this proposition. Firstly, five prototypes of equal dimensions as well as 3 pairs of wings of varying size were fabricated. A comprehensive experiment was then conducted to test these prototypes across varying wing sizes, with and without the CF condition. The results of these tests were analysed and collated into simple graphs against different variables such as power and frequency. It has been found that the CF condition does indeed increase the thrust produced significantly and that it also reduces power consumption in the process. The positive findings of this experiment therefore pave the way for further testing and implementation into CF as a viable means of thrust maximisation.
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Subramanian, Arvind
format Final Year Project
author Subramanian, Arvind
author_sort Subramanian, Arvind
title The effect of clap-and-fling on two-winged flapping flight
title_short The effect of clap-and-fling on two-winged flapping flight
title_full The effect of clap-and-fling on two-winged flapping flight
title_fullStr The effect of clap-and-fling on two-winged flapping flight
title_full_unstemmed The effect of clap-and-fling on two-winged flapping flight
title_sort effect of clap-and-fling on two-winged flapping flight
publishDate 2014
url http://hdl.handle.net/10356/61373
_version_ 1759855616219676672