Next generation optical based touch interface II

The core aim of the project is to develop a system that can serve as a next-generation for human-machine interaction and convert everyday objects starting from an ordinary glass panel into a touch screen using simple sensors and cameras. As interactive screens get bigger, the system becomes more cos...

Full description

Saved in:
Bibliographic Details
Main Author: Thirunavukkarasu, Nivetha
Other Authors: School of Electrical and Electronic Engineering
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/61419
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61419
record_format dspace
spelling sg-ntu-dr.10356-614192023-07-07T17:31:23Z Next generation optical based touch interface II Thirunavukkarasu, Nivetha School of Electrical and Electronic Engineering Khong, Andy Wai Hoong DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems The core aim of the project is to develop a system that can serve as a next-generation for human-machine interaction and convert everyday objects starting from an ordinary glass panel into a touch screen using simple sensors and cameras. As interactive screens get bigger, the system becomes more costly. The project helps in developing a cost-effective touch sensing system that can be expanded to any size and lighting conditions and utilizes the power of mathematics and programming to improve the functionality of the system than by adding any overhead hardware costs.As the ability to detect simultaneously two or more touches has become a large requirement, the project aims at achieving this multi-touch in an effective manner. The implementation aims at developing an algorithm that can better the calibration process, increasing the speed, efficiency and intuitiveness of the technology. Secondly, the system is also being developed to function well under different lighting conditions and especially in scenarios like low-lighting where simply adjusting camera settings might not suffice. The project was divided into 2 phases namely the research& academic phase, where the various multi-touch technologies that were deployed in other models of touch interfaces, such as capacitive, resistive and LED-based optical touch sensors, were explored. This helped me understanding as to what could be the possible ways to implement an efficient multi-touch technology for our present system. Alongside I was also researching on the different environment setting values that need to be adjusted to make a system function under different environmental conditions. The second phase was the implementation was the different theories were understood and applied appropriately to make it suitable for our present implementation. Bachelor of Engineering 2014-06-10T03:40:33Z 2014-06-10T03:40:33Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/61419 en Nanyang Technological University 50 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Thirunavukkarasu, Nivetha
Next generation optical based touch interface II
description The core aim of the project is to develop a system that can serve as a next-generation for human-machine interaction and convert everyday objects starting from an ordinary glass panel into a touch screen using simple sensors and cameras. As interactive screens get bigger, the system becomes more costly. The project helps in developing a cost-effective touch sensing system that can be expanded to any size and lighting conditions and utilizes the power of mathematics and programming to improve the functionality of the system than by adding any overhead hardware costs.As the ability to detect simultaneously two or more touches has become a large requirement, the project aims at achieving this multi-touch in an effective manner. The implementation aims at developing an algorithm that can better the calibration process, increasing the speed, efficiency and intuitiveness of the technology. Secondly, the system is also being developed to function well under different lighting conditions and especially in scenarios like low-lighting where simply adjusting camera settings might not suffice. The project was divided into 2 phases namely the research& academic phase, where the various multi-touch technologies that were deployed in other models of touch interfaces, such as capacitive, resistive and LED-based optical touch sensors, were explored. This helped me understanding as to what could be the possible ways to implement an efficient multi-touch technology for our present system. Alongside I was also researching on the different environment setting values that need to be adjusted to make a system function under different environmental conditions. The second phase was the implementation was the different theories were understood and applied appropriately to make it suitable for our present implementation.
author2 School of Electrical and Electronic Engineering
author_facet School of Electrical and Electronic Engineering
Thirunavukkarasu, Nivetha
format Final Year Project
author Thirunavukkarasu, Nivetha
author_sort Thirunavukkarasu, Nivetha
title Next generation optical based touch interface II
title_short Next generation optical based touch interface II
title_full Next generation optical based touch interface II
title_fullStr Next generation optical based touch interface II
title_full_unstemmed Next generation optical based touch interface II
title_sort next generation optical based touch interface ii
publishDate 2014
url http://hdl.handle.net/10356/61419
_version_ 1772826228791705600