Development of the nodal based discontinuous deformation analysis and its engineering applications
Discontinuous Deformation Analysis (DDA) and Finite Element Method (FEM) belong to two different numerical approaches, the discontinuum-based method and the continuous-based method. The Nodal-based Discontinuous Deformation Analysis (NDDA) introduced in this thesis is a coupled method of DDA and FEM...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/61605 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-61605 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-616052023-03-03T19:22:21Z Development of the nodal based discontinuous deformation analysis and its engineering applications Tian, Qian Zhao Zhiye School of Civil and Environmental Engineering DRNTU::Engineering::Civil engineering::Geotechnical Discontinuous Deformation Analysis (DDA) and Finite Element Method (FEM) belong to two different numerical approaches, the discontinuum-based method and the continuous-based method. The Nodal-based Discontinuous Deformation Analysis (NDDA) introduced in this thesis is a coupled method of DDA and FEM. By incorporating the finite element mesh into the discrete block, the unique block kinematics of the DDA is inherited and the stress field within the block is refined. To make the NDDA method a more powerful tool in the rock engineering analysis, a “crack propagation procedure” is implemented into the NDDA program to describe the failure process in a fully automatic way. Also, the rockbolt element is implemented in the NDDA framework to numerically simulated the rock/bolt interaction when the rock mass is reinforced by rockbolts. An alternative contact mechanism, the Augmented Lagrangian Method (ALM) is introduced into the standard DDA method, and the efficiency and the accuracy of the method are discussed. Finally, the potential use of the new method is demonstrated through the slope sliding and topping analysis. Doctor of Philosophy (CEE) 2014-06-17T02:12:21Z 2014-06-17T02:12:21Z 2014 2014 Thesis Tian, Q. (2014). Development of the nodal based discontinuous deformation analysis and its engineering applications. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/61605 10.32657/10356/61605 en 240 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Civil engineering::Geotechnical |
spellingShingle |
DRNTU::Engineering::Civil engineering::Geotechnical Tian, Qian Development of the nodal based discontinuous deformation analysis and its engineering applications |
description |
Discontinuous Deformation Analysis (DDA) and Finite Element Method (FEM) belong to two different numerical approaches, the discontinuum-based method and the continuous-based method. The Nodal-based Discontinuous Deformation Analysis (NDDA) introduced in this thesis is a coupled method of DDA and FEM. By incorporating the finite element mesh into the discrete block, the unique block kinematics of the DDA is inherited and the stress field within the block is refined. To make the NDDA method a more powerful tool in the rock engineering analysis, a “crack propagation procedure” is implemented into the NDDA program to describe the failure process in a fully automatic way. Also, the rockbolt element is implemented in the NDDA framework to numerically simulated the rock/bolt interaction when the rock mass is reinforced by rockbolts. An alternative contact mechanism, the Augmented Lagrangian Method (ALM) is introduced into the standard DDA method, and the efficiency and the accuracy of the method are discussed. Finally, the potential use of the new method is demonstrated through the slope sliding and topping analysis. |
author2 |
Zhao Zhiye |
author_facet |
Zhao Zhiye Tian, Qian |
format |
Theses and Dissertations |
author |
Tian, Qian |
author_sort |
Tian, Qian |
title |
Development of the nodal based discontinuous deformation analysis and its engineering applications |
title_short |
Development of the nodal based discontinuous deformation analysis and its engineering applications |
title_full |
Development of the nodal based discontinuous deformation analysis and its engineering applications |
title_fullStr |
Development of the nodal based discontinuous deformation analysis and its engineering applications |
title_full_unstemmed |
Development of the nodal based discontinuous deformation analysis and its engineering applications |
title_sort |
development of the nodal based discontinuous deformation analysis and its engineering applications |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/61605 |
_version_ |
1759855757485932544 |