Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites

Shape memory material (SMM) is a type of smart material, which after being severely and quasi-plastically deformed, is able to return its original shape at the presence of the right stimulus. This feature is known as the shape memory effect (SME). Great attention has been attracted on this feature e...

Full description

Saved in:
Bibliographic Details
Main Author: Zhang, Jiliang
Other Authors: Huang Weimin
Format: Theses and Dissertations
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/61745
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61745
record_format dspace
spelling sg-ntu-dr.10356-617452023-03-11T17:42:31Z Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites Zhang, Jiliang Huang Weimin School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Shape memory material (SMM) is a type of smart material, which after being severely and quasi-plastically deformed, is able to return its original shape at the presence of the right stimulus. This feature is known as the shape memory effect (SME). Great attention has been attracted on this feature ever since it was discovered. On the other hand, the shape change effect (SCE) is defined as the shape change in a linear or nonlinear fashion with or without hysteresis in response to the applied right stimulus. Many applications of both effects have already been in engineering practice. In this project, water/moisture-content dependent behaviors in three hydrogels are systematically investigated. It is found that at lower water/moisture contents, all hydrogels have the thermo-responsive and moisture (or water)-induced SME; while at higher water/moisture contents, the hydrogel has the rubber-like mechano-responsive SCE and water-induced SCE. Furthermore, it is shown that on the one hand, programming can be realized by means of distortion at high temperatures (above the glass transition temperature, Tg) of a hydrogel with lower water/moisture content or dehydration after pre-deforming a piece of rubber-like hydrogel (which has higher water/moisture content). Some possible applications utilizing the SME/SCE either individually or combined together are proposed. On the other hand, hydrogel can be used as the elastic matrix in a hybrid for tailored SME. MECHANICAL ENGINEERING 2014-09-12T02:28:21Z 2014-09-12T02:28:21Z 2014 2014 Thesis Zhang, J. (2014). Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites. Master’s thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/61745 10.32657/10356/61745 en 99 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Zhang, Jiliang
Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
description Shape memory material (SMM) is a type of smart material, which after being severely and quasi-plastically deformed, is able to return its original shape at the presence of the right stimulus. This feature is known as the shape memory effect (SME). Great attention has been attracted on this feature ever since it was discovered. On the other hand, the shape change effect (SCE) is defined as the shape change in a linear or nonlinear fashion with or without hysteresis in response to the applied right stimulus. Many applications of both effects have already been in engineering practice. In this project, water/moisture-content dependent behaviors in three hydrogels are systematically investigated. It is found that at lower water/moisture contents, all hydrogels have the thermo-responsive and moisture (or water)-induced SME; while at higher water/moisture contents, the hydrogel has the rubber-like mechano-responsive SCE and water-induced SCE. Furthermore, it is shown that on the one hand, programming can be realized by means of distortion at high temperatures (above the glass transition temperature, Tg) of a hydrogel with lower water/moisture content or dehydration after pre-deforming a piece of rubber-like hydrogel (which has higher water/moisture content). Some possible applications utilizing the SME/SCE either individually or combined together are proposed. On the other hand, hydrogel can be used as the elastic matrix in a hybrid for tailored SME.
author2 Huang Weimin
author_facet Huang Weimin
Zhang, Jiliang
format Theses and Dissertations
author Zhang, Jiliang
author_sort Zhang, Jiliang
title Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
title_short Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
title_full Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
title_fullStr Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
title_full_unstemmed Thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
title_sort thermo-/chemo-responsive shape memory/change effect in hydrogels and their composites
publishDate 2014
url https://hdl.handle.net/10356/61745
_version_ 1761781707582734336