Dynamic inventory policies for aerospace service parts supply chain

Service parts, which replace defective parts in aerospace repair facilities, are expensive. On the other hand, on-time fulfillment of demand for these parts is crucial as there are hefty financial penalties for aircraft schedule delays. Therefore, it is crucial to design an inventory and distributio...

Full description

Saved in:
Bibliographic Details
Main Author: Aghil Rezaei Somarin
Other Authors: Lee Eng Wah
Format: Theses and Dissertations
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/61820
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61820
record_format dspace
spelling sg-ntu-dr.10356-618202023-03-11T17:31:40Z Dynamic inventory policies for aerospace service parts supply chain Aghil Rezaei Somarin Lee Eng Wah Chen Songlin School of Mechanical and Aerospace Engineering DRNTU::Business::Operations management::Inventory control DRNTU::Business::Operations management::Supply chain management DRNTU::Engineering::Industrial engineering::Operations research Service parts, which replace defective parts in aerospace repair facilities, are expensive. On the other hand, on-time fulfillment of demand for these parts is crucial as there are hefty financial penalties for aircraft schedule delays. Therefore, it is crucial to design an inventory and distribution system which minimizes the total cost of inventory investment. Recent changes in commercial aviation, e.g. substantial increase in fuel and labor costs and continuous growth of low fare carriers, have forced airlines to improve the efficiency of their MRO operations. As a result, it is not un-common for MRO operations to be outsourced to overseas service providers and for service providers to have more than one airline customer. All this has resulted in a complex and decentralized service parts logistics system. Research so far has focused mainly on static decision making for service parts networks with a few warehouses. This research deals with generating dynamic inventory policies for larger service parts supply chains modeled as Markov Decision Processes (MDP). Capitalizing on the real-time information of parts in the resupply network, three types of decision are investigated: allocation of service parts to the bases (stock allocation policy), reallocation of service parts among the bases (stock reallocation policy) and emergency resupply of service parts from alternative source options (emergency resupply policy). Each policy is generated based on the optimal relative value function of the respective dynamic program modeled as MDP. It is shown that stock allocation policy can be characterized by a set of switching curves. Stock reallocation policy defines regions of imbalance. When the inventory levels enter these regions, reallocation of a service part is initiated. Emergency resupply policy can be defined by a set of limiting boundaries; when these boundaries are reached, it is optimal to fulfill the demand from alternative sources. To overcome the common problem with MDP, "curse of dimensionality" in particular, heuristic techniques are proposed to approximate the optimal relative value function. The optimal relative value function for a single-base model is derived by solving the respective difference equation systems and is used as the basis for developing these techniques. The relative value function of a single-base model is proposed to be used for stock allocation policy generation. Aggregate queues are developed and utilized in approximating the optimal relative value function for stock reallocation. The optimal relative value function of an inventory system without safety stocks is derived and a difference operator is introduced. Using the proposed difference operator, the optimal relative value function for emergency resupply policy is approximated. For each of the developed inventory policies, computational experiments are conducted to evaluate the optimality gaps and cost reductions. Computational experiments of each policy consist of a general problem set and series of sensitivity analysis. Based on the numerical results, proposed policies perform very close to the optimal policies. The models developed in this research could serve as a foundation to develop decision support systems to improve the efficiency and reduce costs in service parts supply chain management. DOCTOR OF PHILOSOPHY (MAE) 2014-11-04T01:30:49Z 2014-11-04T01:30:49Z 2014 2014 Thesis Aghil Rezaei Somarin. (2014). Dynamic inventory policies for aerospace service parts supply chain. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/61820 10.32657/10356/61820 en 164 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Business::Operations management::Inventory control
DRNTU::Business::Operations management::Supply chain management
DRNTU::Engineering::Industrial engineering::Operations research
spellingShingle DRNTU::Business::Operations management::Inventory control
DRNTU::Business::Operations management::Supply chain management
DRNTU::Engineering::Industrial engineering::Operations research
Aghil Rezaei Somarin
Dynamic inventory policies for aerospace service parts supply chain
description Service parts, which replace defective parts in aerospace repair facilities, are expensive. On the other hand, on-time fulfillment of demand for these parts is crucial as there are hefty financial penalties for aircraft schedule delays. Therefore, it is crucial to design an inventory and distribution system which minimizes the total cost of inventory investment. Recent changes in commercial aviation, e.g. substantial increase in fuel and labor costs and continuous growth of low fare carriers, have forced airlines to improve the efficiency of their MRO operations. As a result, it is not un-common for MRO operations to be outsourced to overseas service providers and for service providers to have more than one airline customer. All this has resulted in a complex and decentralized service parts logistics system. Research so far has focused mainly on static decision making for service parts networks with a few warehouses. This research deals with generating dynamic inventory policies for larger service parts supply chains modeled as Markov Decision Processes (MDP). Capitalizing on the real-time information of parts in the resupply network, three types of decision are investigated: allocation of service parts to the bases (stock allocation policy), reallocation of service parts among the bases (stock reallocation policy) and emergency resupply of service parts from alternative source options (emergency resupply policy). Each policy is generated based on the optimal relative value function of the respective dynamic program modeled as MDP. It is shown that stock allocation policy can be characterized by a set of switching curves. Stock reallocation policy defines regions of imbalance. When the inventory levels enter these regions, reallocation of a service part is initiated. Emergency resupply policy can be defined by a set of limiting boundaries; when these boundaries are reached, it is optimal to fulfill the demand from alternative sources. To overcome the common problem with MDP, "curse of dimensionality" in particular, heuristic techniques are proposed to approximate the optimal relative value function. The optimal relative value function for a single-base model is derived by solving the respective difference equation systems and is used as the basis for developing these techniques. The relative value function of a single-base model is proposed to be used for stock allocation policy generation. Aggregate queues are developed and utilized in approximating the optimal relative value function for stock reallocation. The optimal relative value function of an inventory system without safety stocks is derived and a difference operator is introduced. Using the proposed difference operator, the optimal relative value function for emergency resupply policy is approximated. For each of the developed inventory policies, computational experiments are conducted to evaluate the optimality gaps and cost reductions. Computational experiments of each policy consist of a general problem set and series of sensitivity analysis. Based on the numerical results, proposed policies perform very close to the optimal policies. The models developed in this research could serve as a foundation to develop decision support systems to improve the efficiency and reduce costs in service parts supply chain management.
author2 Lee Eng Wah
author_facet Lee Eng Wah
Aghil Rezaei Somarin
format Theses and Dissertations
author Aghil Rezaei Somarin
author_sort Aghil Rezaei Somarin
title Dynamic inventory policies for aerospace service parts supply chain
title_short Dynamic inventory policies for aerospace service parts supply chain
title_full Dynamic inventory policies for aerospace service parts supply chain
title_fullStr Dynamic inventory policies for aerospace service parts supply chain
title_full_unstemmed Dynamic inventory policies for aerospace service parts supply chain
title_sort dynamic inventory policies for aerospace service parts supply chain
publishDate 2014
url https://hdl.handle.net/10356/61820
_version_ 1761781267959906304