Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys

Magnesium is the lightest of all structural engineering metals used today, 33% lighter than aluminium and 75% lighter than steel. It has good ductility, electromagnetic interference reduction, excellent castability and, through proper alloying, also high strength. Although it is often used in lightw...

Full description

Saved in:
Bibliographic Details
Main Author: Zool Ikhsan Abdul Rahman
Other Authors: Tan Ming Jen
Format: Final Year Project
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10356/61962
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-61962
record_format dspace
spelling sg-ntu-dr.10356-619622023-03-04T19:18:32Z Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys Zool Ikhsan Abdul Rahman Tan Ming Jen School of Mechanical and Aerospace Engineering A*STAR Singapore Institute of Manufacturing Technology DRNTU::Engineering::Materials::Metallic materials::Corrosion DRNTU::Engineering::Materials::Material testing and characterization DRNTU::Engineering::Materials::Metallic materials::Alloys Magnesium is the lightest of all structural engineering metals used today, 33% lighter than aluminium and 75% lighter than steel. It has good ductility, electromagnetic interference reduction, excellent castability and, through proper alloying, also high strength. Although it is often used in lightweight construction, wider applications of magnesium are still limited due its poor corrosion resistance. As a proposed solution, conversion coatings for AZ31 Mg alloys using hydrothermal deposition were developed in this study. Magnesium phosphate coatings deposited at 130°C for 3 hours using 0.06M NH4H2PO4 solution resulted in a closely packed crystal-like surface morphology. The obtained corrosion potential (-0.613V) was more positive than the untreated substrate (-1.449V). The corrosion current density (1.22x10-7Acm-2) was also reduced by three orders of magnitude (1.11x10-4Acm-2). Under salt spray conditions, the magnesium phosphate coating experienced severe pitting corrosion after 8 days. The sample was then completely covered with magnesium hydroxide corrosion by-products after 25 days. Zinc phosphate coatings deposited at 160°C for 3 hours using 0.06M NH4H2PO4 + 0.10M Zn3(PO4)2 solution also resulted in a crystal-like surface coating and improved corrosion resistance (Ecorr = -0.724V, Icorr = 2.12x10-4Acm-2). Building on present research, this study showed that the hydrothermal deposition method could be expanded further to produce corrosion resistant magnesium phosphate and zinc phosphate coatings. This method is low cost, simple and allows for the application of an even surface coating regardless of the specimen shape or form. Thus it provides a useful alternative to produce small corrosion resistant parts for use in wider engineering applications. Bachelor of Engineering (Mechanical Engineering) 2014-12-12T04:41:51Z 2014-12-12T04:41:51Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/61962 en Nanyang Technological University 80 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Metallic materials::Corrosion
DRNTU::Engineering::Materials::Material testing and characterization
DRNTU::Engineering::Materials::Metallic materials::Alloys
spellingShingle DRNTU::Engineering::Materials::Metallic materials::Corrosion
DRNTU::Engineering::Materials::Material testing and characterization
DRNTU::Engineering::Materials::Metallic materials::Alloys
Zool Ikhsan Abdul Rahman
Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
description Magnesium is the lightest of all structural engineering metals used today, 33% lighter than aluminium and 75% lighter than steel. It has good ductility, electromagnetic interference reduction, excellent castability and, through proper alloying, also high strength. Although it is often used in lightweight construction, wider applications of magnesium are still limited due its poor corrosion resistance. As a proposed solution, conversion coatings for AZ31 Mg alloys using hydrothermal deposition were developed in this study. Magnesium phosphate coatings deposited at 130°C for 3 hours using 0.06M NH4H2PO4 solution resulted in a closely packed crystal-like surface morphology. The obtained corrosion potential (-0.613V) was more positive than the untreated substrate (-1.449V). The corrosion current density (1.22x10-7Acm-2) was also reduced by three orders of magnitude (1.11x10-4Acm-2). Under salt spray conditions, the magnesium phosphate coating experienced severe pitting corrosion after 8 days. The sample was then completely covered with magnesium hydroxide corrosion by-products after 25 days. Zinc phosphate coatings deposited at 160°C for 3 hours using 0.06M NH4H2PO4 + 0.10M Zn3(PO4)2 solution also resulted in a crystal-like surface coating and improved corrosion resistance (Ecorr = -0.724V, Icorr = 2.12x10-4Acm-2). Building on present research, this study showed that the hydrothermal deposition method could be expanded further to produce corrosion resistant magnesium phosphate and zinc phosphate coatings. This method is low cost, simple and allows for the application of an even surface coating regardless of the specimen shape or form. Thus it provides a useful alternative to produce small corrosion resistant parts for use in wider engineering applications.
author2 Tan Ming Jen
author_facet Tan Ming Jen
Zool Ikhsan Abdul Rahman
format Final Year Project
author Zool Ikhsan Abdul Rahman
author_sort Zool Ikhsan Abdul Rahman
title Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
title_short Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
title_full Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
title_fullStr Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
title_full_unstemmed Corrosion study of hydrothermally deposited coatings on AZ31 Mg alloys
title_sort corrosion study of hydrothermally deposited coatings on az31 mg alloys
publishDate 2014
url http://hdl.handle.net/10356/61962
_version_ 1759857169944018944