Verification & discretization of the index theorem for a two dimensional dirac operator
The famous Atiyah-Singer Index Theorem states that for an elliptic partial differential operator D on a compact manifold, the analytical index (related to the solution space of the partial differential equation Df = 0) is equal to the topological index (defined in terms of some topological data of D...
Saved in:
Main Author: | Lim, Kim Song |
---|---|
Other Authors: | David Henry Adams |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/62324 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Similar Items
-
Index of lattice dirac operators
by: Reetabrata Har
Published: (2014) -
Index of a family of lattice Dirac operators and its relation to the non-abelian anomaly on the lattice
by: Adams, David H.
Published: (2013) -
General bounds on the Wilson-Dirac operator
by: Adams, David H.
Published: (2013) -
A discrete analogue for Minkowski’s second theorem on successive minima
by: Malikiosis, Romanos-Diogenes
Published: (2013) -
Theoretical foundation for the index theorem on the lattice with staggered fermions
by: Adams, David H.
Published: (2013)