Studies of networking algorithms in wireless sensor networks

In traditional wireless sensor networks (WSNs), sensors powered by battery are largely deployed in a field to observe certain physical phenomena, such as temperature, noise and many more. The purpose of WSN is to be able to sense from environment and detect events for a long time. By improving the n...

Full description

Saved in:
Bibliographic Details
Main Author: Zhang, Pengfei
Other Authors: Tan Hwee Pink
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/62910
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-62910
record_format dspace
spelling sg-ntu-dr.10356-629102023-07-04T15:28:03Z Studies of networking algorithms in wireless sensor networks Zhang, Pengfei Tan Hwee Pink Xiao Gaoxi School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems In traditional wireless sensor networks (WSNs), sensors powered by battery are largely deployed in a field to observe certain physical phenomena, such as temperature, noise and many more. The purpose of WSN is to be able to sense from environment and detect events for a long time. By improving the network lifetime, WSNs are able to detect events longer. This agrees with the nature of WSNs, which is sense-to-detect events through long operations (hopefully) of batteries. However, limited battery capacity and low event detection probability have always been imposing serious challenges and constraints to network applications, stimulating the developments of various new technologies. Existing works on maximizing lifetime include networking clustering technologies which let most sensors communicate with the nearby cluster head (CH) rather than the remote base station; and energy-harvesting (EH) sensors which allow battery recharging by collecting energy from surrounding environment, etc. Existing works on maximizing event detection probability study the case of deterministic and known sensors deployment, where sensors transmit their local observations or decisions over perfectly known channels to a Gateway, which collects the observations and fuses them in order to perform event detection. In this thesis, we propose a centralized approach to finding the optimal locations for cluster heads and energy harvesting nodes, where we consider nodes powered by ambient energy harvesting as dedicated relay nodes for cluster heads, and propose joint clustering and relay node placement algorithms for network lifetime maximization. In addition, we also propose a distributed EH-CH matching algorithm with given locations for CHs and EHs. To achieve good EH-CH matching in a distributed manner, we borrow ideas adopted in virtual-output-queued (VOQ) networks to develop a simple matching scheme. For the problem of event detection, we develop the first reported solution for wireless sensor network under random deployment. We consider the practical case where the spatial distribution of the sensors follows a Finite Binomial Point Process (FBPP) and Infinite Poisson Point Process (IPPP) for both homogeneous and inhomogeneous cases. In addition, we present novel distributed event detection algorithms based on a statistical approach that tolerates Byzantine attacks and nonlinear transmission schemes where malicious (compromised) or nonlinear sensors send false sensing data to the gateway leading to increased false alarm rate using Moment Matching and Series Expansion methods. We provide analytical and extensive simulation results to demonstrate the optimality and convergence of all these algorithms, and therefore help provide useful benchmarks for various centralized and distributed scheme designs. DOCTOR OF PHILOSOPHY (EEE) 2015-05-04T01:01:33Z 2015-05-04T01:01:33Z 2015 2015 Thesis Zhang, P. (2015). Studies of networking algorithms in wireless sensor networks. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62910 10.32657/10356/62910 en 187 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Wireless communication systems
Zhang, Pengfei
Studies of networking algorithms in wireless sensor networks
description In traditional wireless sensor networks (WSNs), sensors powered by battery are largely deployed in a field to observe certain physical phenomena, such as temperature, noise and many more. The purpose of WSN is to be able to sense from environment and detect events for a long time. By improving the network lifetime, WSNs are able to detect events longer. This agrees with the nature of WSNs, which is sense-to-detect events through long operations (hopefully) of batteries. However, limited battery capacity and low event detection probability have always been imposing serious challenges and constraints to network applications, stimulating the developments of various new technologies. Existing works on maximizing lifetime include networking clustering technologies which let most sensors communicate with the nearby cluster head (CH) rather than the remote base station; and energy-harvesting (EH) sensors which allow battery recharging by collecting energy from surrounding environment, etc. Existing works on maximizing event detection probability study the case of deterministic and known sensors deployment, where sensors transmit their local observations or decisions over perfectly known channels to a Gateway, which collects the observations and fuses them in order to perform event detection. In this thesis, we propose a centralized approach to finding the optimal locations for cluster heads and energy harvesting nodes, where we consider nodes powered by ambient energy harvesting as dedicated relay nodes for cluster heads, and propose joint clustering and relay node placement algorithms for network lifetime maximization. In addition, we also propose a distributed EH-CH matching algorithm with given locations for CHs and EHs. To achieve good EH-CH matching in a distributed manner, we borrow ideas adopted in virtual-output-queued (VOQ) networks to develop a simple matching scheme. For the problem of event detection, we develop the first reported solution for wireless sensor network under random deployment. We consider the practical case where the spatial distribution of the sensors follows a Finite Binomial Point Process (FBPP) and Infinite Poisson Point Process (IPPP) for both homogeneous and inhomogeneous cases. In addition, we present novel distributed event detection algorithms based on a statistical approach that tolerates Byzantine attacks and nonlinear transmission schemes where malicious (compromised) or nonlinear sensors send false sensing data to the gateway leading to increased false alarm rate using Moment Matching and Series Expansion methods. We provide analytical and extensive simulation results to demonstrate the optimality and convergence of all these algorithms, and therefore help provide useful benchmarks for various centralized and distributed scheme designs.
author2 Tan Hwee Pink
author_facet Tan Hwee Pink
Zhang, Pengfei
format Theses and Dissertations
author Zhang, Pengfei
author_sort Zhang, Pengfei
title Studies of networking algorithms in wireless sensor networks
title_short Studies of networking algorithms in wireless sensor networks
title_full Studies of networking algorithms in wireless sensor networks
title_fullStr Studies of networking algorithms in wireless sensor networks
title_full_unstemmed Studies of networking algorithms in wireless sensor networks
title_sort studies of networking algorithms in wireless sensor networks
publishDate 2015
url https://hdl.handle.net/10356/62910
_version_ 1772827217168957440