Design of variable gain amplifier in CMOS technology
The variable gain amplifier (VGA), as one of the critical components in modern wireless transceiver designs, is widely used to provide a fixed output power for different input signals to improve the transceiver’s dynamic range. Based on the targeted frequency, VGA is categorized as general purpose V...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/62911 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-62911 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-629112023-07-04T17:17:20Z Design of variable gain amplifier in CMOS technology Liu, Hang Boon Chirn Chye School of Electrical and Electronic Engineering VIRTUS IC Design Centre of Excellence Centre for Integrated Circuits and Systems DRNTU::Engineering::Electrical and electronic engineering::Integrated circuits The variable gain amplifier (VGA), as one of the critical components in modern wireless transceiver designs, is widely used to provide a fixed output power for different input signals to improve the transceiver’s dynamic range. Based on the targeted frequency, VGA is categorized as general purpose VGA for narrow bandwidth applications, and high-frequency VGA for applications with stringent bandwidth requirement. The challenges in VGA design is mainly the realization of accurate dB-linear characteristic with minimum power consumption and die area, as well as achieving the required bandwidth for the targeted application. In this thesis, a new design approach which is the “cell-based” design method is proposed. The advantage of cell-based VGA design is that the number of unit cells to be cascaded can be chosen according to the system requirements. Moreover, a reconfigurable approach, by means of a digital control, can be implemented based on the unit cell to realize re-configurability and power scalability. As a result, multiple application standards can be satisfied with options for wide gain variation range, small gain error or low power consumption. There are mainly two types of cells designed for the proposed cell-based design method. One is the gate-tuned VGA cell and the other one is the body-tuned VGA cell. Both of the cells achieved accurate dB-linear characteristic with minimum power consumption. The gate-tuned VGA cell is also combined with gate peaking technique for bandwidth extension, such that it is suitable in high-frequency VGA design. Based on the proposed cells, three VGAs are designed, which are a gate-tuned general purpose VGA, a body-tuned general purpose VGA and a gate-tuned high-frequency VGA with gate peaking technique. Measurement results show that the proposed cell-based design method is not only feasible, but also achieved very good performance in terms of accuracy, bandwidth, power consumption and die area. The body-tuned reconfigurable VGA can also work as a tunable PGA with variable gain step, which demonstrated the re-configurability, power scalability and versatility of the proposed cell-based design method. DOCTOR OF PHILOSOPHY (EEE) 2015-05-04T01:04:30Z 2015-05-04T01:04:30Z 2015 2015 Thesis Liu, H. (2015). Design of variable gain amplifier in CMOS technology. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/62911 10.32657/10356/62911 en 122 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering::Integrated circuits |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering::Integrated circuits Liu, Hang Design of variable gain amplifier in CMOS technology |
description |
The variable gain amplifier (VGA), as one of the critical components in modern wireless transceiver designs, is widely used to provide a fixed output power for different input signals to improve the transceiver’s dynamic range. Based on the targeted frequency, VGA is categorized as general purpose VGA for narrow bandwidth applications, and high-frequency VGA for applications with stringent bandwidth requirement. The challenges in VGA design is mainly the realization of accurate dB-linear characteristic with minimum power consumption and die area, as well as achieving the required bandwidth for the targeted application.
In this thesis, a new design approach which is the “cell-based” design method is proposed. The advantage of cell-based VGA design is that the number of unit cells to be cascaded can be chosen according to the system requirements. Moreover, a reconfigurable approach, by means of a digital control, can be implemented based on the unit cell to realize re-configurability and power scalability. As a result, multiple application standards can be satisfied with options for wide gain variation range, small gain error or low power consumption.
There are mainly two types of cells designed for the proposed cell-based design method. One is the gate-tuned VGA cell and the other one is the body-tuned VGA cell. Both of the cells achieved accurate dB-linear characteristic with minimum power consumption. The gate-tuned VGA cell is also combined with gate peaking technique for bandwidth extension, such that it is suitable in high-frequency VGA design.
Based on the proposed cells, three VGAs are designed, which are a gate-tuned general purpose VGA, a body-tuned general purpose VGA and a gate-tuned high-frequency VGA with gate peaking technique. Measurement results show that the proposed cell-based design method is not only feasible, but also achieved very good performance in terms of accuracy, bandwidth, power consumption and die area. The body-tuned reconfigurable VGA can also work as a tunable PGA with variable gain step, which demonstrated the re-configurability, power scalability and versatility of the proposed cell-based design method. |
author2 |
Boon Chirn Chye |
author_facet |
Boon Chirn Chye Liu, Hang |
format |
Theses and Dissertations |
author |
Liu, Hang |
author_sort |
Liu, Hang |
title |
Design of variable gain amplifier in CMOS technology |
title_short |
Design of variable gain amplifier in CMOS technology |
title_full |
Design of variable gain amplifier in CMOS technology |
title_fullStr |
Design of variable gain amplifier in CMOS technology |
title_full_unstemmed |
Design of variable gain amplifier in CMOS technology |
title_sort |
design of variable gain amplifier in cmos technology |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/62911 |
_version_ |
1772825681987633152 |