Study of composite array for multi-resolution digital beamforming

Digital beamforming, the bridge between antenna technology and digital technology, has been highly recognized in the applications of radar communications, wireless communications, and radio astronomy. Particularly, the adaptive beamformer in digital beamforming is critical in high performance radar...

全面介紹

Saved in:
書目詳細資料
主要作者: Cui, Wei
其他作者: Lu Yilong
格式: Final Year Project
語言:English
出版: 2015
主題:
在線閱讀:http://hdl.handle.net/10356/64248
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Digital beamforming, the bridge between antenna technology and digital technology, has been highly recognized in the applications of radar communications, wireless communications, and radio astronomy. Particularly, the adaptive beamformer in digital beamforming is critical in high performance radar systems. A new antenna array configuration multi-resolution composite array (MRCA) is learnt in this project. Inspired by the idea of multiplicative arrays, MRCA is proposed though combining three or more levels of uniform linear arrays, forming the resulted arbitrary linear array. This report presents a study of adaptive beamforming for the arbitrary linear array MRCA via applying the powerful and versatile particle swarm optimization (PSO) algorithm. Breaking the traditional configuration of uniform linear array, the arbitrary linear array with unequal inter element separations can even achieve a better performance with maintaining main beam pattern and bandwidth, and reducing the levels of sidelobes. Numerical experiments for sidelobe suppression and element failure correction have demonstrated that the presented PSO approach is effective for adaptive beamforming. Matlab simulations for nulling and nulling steering, as well as comparisons between uniform linear array and MRCA have illustrated the benefits that MRCA can offer – elements’ numbers reduction, sidelobe suppression, adaptive flexibility and reliable performance. Last but not least, future works on this topic will be discussed for a smooth and consistent further research.