Graphene quantum dots as drug carriers

In this work, graphene quantum dot (GQD), a nanoscale fluorescent material, was successfully obtained through a ‘top-down’ method, using carbon black as a source. The as-prepared GQDs were applied as a drug carrier to target Doxorubicin (DOX) to tumor cells. It was found that in PBS solution, the lo...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chen, Jie
مؤلفون آخرون: Chen Peng
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2015
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/64396
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this work, graphene quantum dot (GQD), a nanoscale fluorescent material, was successfully obtained through a ‘top-down’ method, using carbon black as a source. The as-prepared GQDs were applied as a drug carrier to target Doxorubicin (DOX) to tumor cells. It was found that in PBS solution, the loading efficiency of DOX onto the surface of GQDs reached highest at pH 8. Besides, at pH 6, most of the drugs were released from the GQD matrix after 24 hours. The results indicate that the loading and release behavior of DOX can be controlled by adjusting the pH of the solution, which is advantageous since the tumor cells have a slightly acidic environment. The cell viability test also showed that with the presence of GQD, DOX has a more significant killing efficiency.