Mitigation techniques for mobile communications over fading channels

Wireless communications has been a major breakthrough in the communication era and has been under tremendous development over the past two decades. It has been constantly improving its quality and capacity to meet the huge growing demand and requirements of people. Hence, this has become a...

Full description

Saved in:
Bibliographic Details
Main Author: Subarajan, Loganathan
Other Authors: Li Kwok Hung
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/64779
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-64779
record_format dspace
spelling sg-ntu-dr.10356-647792023-07-04T15:46:21Z Mitigation techniques for mobile communications over fading channels Subarajan, Loganathan Li Kwok Hung School of Electrical and Electronic Engineering DRNTU::Engineering Wireless communications has been a major breakthrough in the communication era and has been under tremendous development over the past two decades. It has been constantly improving its quality and capacity to meet the huge growing demand and requirements of people. Hence, this has become a vital area for research and development. Mobile communications involves both wired communications as well as wireless communications. The major challenge for mobile communication lies in the latter part, wireless communications. This is due to the signal being deteriorated by attenuations due to propagation and various obstacles such as buildings, hills, lamp posts and also the relative motion between the transmitter and the mobile station. Hence, the transmitted signal undergoes various disturbances, resulting in attenuation and fading. The term fading refers to the fluctuations in amplitude and phase of the transmitted signal due to large distances and multi path environments of wireless channels. The transmitted signal can reach the receiver through various paths after getting reflected, diffracted and scattered from various obstacles. These multipath components can add up constructively or destructively, which results in fading. Apart from this, there will be external noise or thermal noise added to the signal. Hence, at the receiver, all these harmful effects need to be removed to identify and detect the original transmitted signal. Improper handling of these signals results in higher bit-error rates (BERs) and affects the quality of service (QoS). This dissertation involves the analysis of various mitigation techniques deployed to reduce the fading involved so that optimum solution can be implemented at the receiver to achieve best performance. The first step of this project work is related to the analysis of different channel models and fading environments to produce the simulation results of BER curves plotted against different signal-to-noise ratios (SNRs). These different models include single path, direct line-of-sight (LOS) path and multipath under flat-fading and frequency-selective-fading environments. The second half of the dissertation deals with equalizing the effects of channel using various equalization methods and their performance results are analyzed to reduce BERs and optimize the SNR. The results are generated and simulated in MATLAB. Master of Science (Communications Engineering) 2015-06-04T02:40:11Z 2015-06-04T02:40:11Z 2014 2014 Thesis http://hdl.handle.net/10356/64779 en 72 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Subarajan, Loganathan
Mitigation techniques for mobile communications over fading channels
description Wireless communications has been a major breakthrough in the communication era and has been under tremendous development over the past two decades. It has been constantly improving its quality and capacity to meet the huge growing demand and requirements of people. Hence, this has become a vital area for research and development. Mobile communications involves both wired communications as well as wireless communications. The major challenge for mobile communication lies in the latter part, wireless communications. This is due to the signal being deteriorated by attenuations due to propagation and various obstacles such as buildings, hills, lamp posts and also the relative motion between the transmitter and the mobile station. Hence, the transmitted signal undergoes various disturbances, resulting in attenuation and fading. The term fading refers to the fluctuations in amplitude and phase of the transmitted signal due to large distances and multi path environments of wireless channels. The transmitted signal can reach the receiver through various paths after getting reflected, diffracted and scattered from various obstacles. These multipath components can add up constructively or destructively, which results in fading. Apart from this, there will be external noise or thermal noise added to the signal. Hence, at the receiver, all these harmful effects need to be removed to identify and detect the original transmitted signal. Improper handling of these signals results in higher bit-error rates (BERs) and affects the quality of service (QoS). This dissertation involves the analysis of various mitigation techniques deployed to reduce the fading involved so that optimum solution can be implemented at the receiver to achieve best performance. The first step of this project work is related to the analysis of different channel models and fading environments to produce the simulation results of BER curves plotted against different signal-to-noise ratios (SNRs). These different models include single path, direct line-of-sight (LOS) path and multipath under flat-fading and frequency-selective-fading environments. The second half of the dissertation deals with equalizing the effects of channel using various equalization methods and their performance results are analyzed to reduce BERs and optimize the SNR. The results are generated and simulated in MATLAB.
author2 Li Kwok Hung
author_facet Li Kwok Hung
Subarajan, Loganathan
format Theses and Dissertations
author Subarajan, Loganathan
author_sort Subarajan, Loganathan
title Mitigation techniques for mobile communications over fading channels
title_short Mitigation techniques for mobile communications over fading channels
title_full Mitigation techniques for mobile communications over fading channels
title_fullStr Mitigation techniques for mobile communications over fading channels
title_full_unstemmed Mitigation techniques for mobile communications over fading channels
title_sort mitigation techniques for mobile communications over fading channels
publishDate 2015
url http://hdl.handle.net/10356/64779
_version_ 1772827413021982720