Enhancement of saturated pool boiling using 3D printed substrates

The advancement of technology has led to increased performance of the electronic chips, which demands higher heat transfer rate to remove the excessive heat. One of the alternative ways to remove the excessive heat is through nucleate pool boiling. With this technique, the components are immersed in...

Full description

Saved in:
Bibliographic Details
Main Author: Eugene Sebastian, Semuil
Other Authors: Leong Kai Choong
Format: Final Year Project
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/64980
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The advancement of technology has led to increased performance of the electronic chips, which demands higher heat transfer rate to remove the excessive heat. One of the alternative ways to remove the excessive heat is through nucleate pool boiling. With this technique, the components are immersed in a dielectric fluid to transfer the heat. This study aims to increase the performance of the surface used for pool boiling in saturated region using the additive manufacturing technique of selective laser melting (SLM) to create complex structures. The experiments were performed using the working fluid of FC-72 under atmospheric pressure. Six surfaces were tested, which are crafted from aluminium alloy powder AlSi10Mg, including one control variable which is the plain surface. Three of the surfaces are categorised under fins while the two others used the lattice structure as their base shape. These experiments confirmed that the plain surface of the aluminium could improve the CHF of the surface, mainly because of the roughness obtained from the additive manufactured. The fin structures do not increase the average heat transfer coefficient, but increases the upper limit of maximum heat flux, known as the Critical Heat Flux (CHF). The lattice structures were able to increase the performance up to 20% from the average heat transfer coefficient, while the CHF was also increased greatly.