Biaxial bioreactor based generation of tissue engineered bone grafts

Bone tissue engineering (BTE) has been proposed as a promising strategy to develop off-the-shelf tissue engineered bone grafts (TEBG), to treat fractures and overcome the drawbacks of conventional treatments. TEBG currently relies on the integration of three disciplines, scaffold, stem cell and dyna...

全面介紹

Saved in:
書目詳細資料
主要作者: Lee, Boon Tat
其他作者: Teoh Swee Hin
格式: Final Year Project
語言:English
出版: 2015
主題:
在線閱讀:http://hdl.handle.net/10356/65035
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Bone tissue engineering (BTE) has been proposed as a promising strategy to develop off-the-shelf tissue engineered bone grafts (TEBG), to treat fractures and overcome the drawbacks of conventional treatments. TEBG currently relies on the integration of three disciplines, scaffold, stem cell and dynamic culture technologies such as bioreactors to achieve clinical utility. Bi-axial bioreactor has shown to be efficient in achieving cellularization as compared to other conventional bioreactor systems. With configurational modifications, the biaxial bioreactor has to be operated under partial bi-axial rotation conditions (sub-optimal capacity). This study aims to determine if the partial bi-axial rotation will still show desirable cellular proliferation, homogenous distribution and osteogenesis. Proliferation, mineralization and cell viability was studied after 14 days of partial bi-axial rotation. Results gathered showed increased proliferation, with total double-stranded DNA content for the partial bi-axial bioreactor culture on day 14 (1.4×) more than static culture. Also, observation through FDA/PI showed increased cell viability and homogenous cellular distribution.