Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration
This report explains a versatile strategy in using multi-functional mussel-inspired Polydopamine (PDA) in the development of well-defined single-nanoparticle@Metal-Organic Framework (MOF) core-shell nanohybrids. PDA has the ability in the formation of strong conformal coatings on colloidal substrate...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/65037 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-65037 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-650372023-03-03T15:36:50Z Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration Goh, Yi Ting Duan Hong Wei School of Chemical and Biomedical Engineering DRNTU::Engineering::Bioengineering This report explains a versatile strategy in using multi-functional mussel-inspired Polydopamine (PDA) in the development of well-defined single-nanoparticle@Metal-Organic Framework (MOF) core-shell nanohybrids. PDA has the ability in the formation of strong conformal coatings on colloidal substrates of any chemical composition and to initiate the heterogenous nucleation and growth of MOFs. These capabilities give rise to great potential in the customized structural integration of a wide array of inorganic or organic nanoparticles and functional MOFs. In addition, PDA possesses exceptional redox activity, which creates more opportunities in the alteration of the functionalities of the nanohybrids. This can be done by using localized reduction to insert plasmonic or catalytic metal nanostructures between the core and shell. The development of these core-shell nanohybrids, with its molecular size selectivity property from the MOF shell together with the intrinsic properties of the nanoparticle cores, signifies a distinct group of nanomaterials that has great potential in catalysis, sensing, and nanomedicine. This study mainly focuses on coating a PDA layer on the core and then encapsulating it with different MOF shells various nanoparticles. Further exploration of the strategy includes synthesizing the MagNP@PDA@AuNPs@MOF core-shell nanohybrids. The synthesis of Gold nanoparticles will be performed using the citrate reduction and seed-growth method. The TEM, SEM, UV-vis Spectroscopy and XRD will be used to monitor the growth of PDA and MOF around the core, to determine the size and shape of the nanoparticles and the thickness of PDA and MOF layers. Bachelor of Engineering (Chemical and Biomolecular Engineering) 2015-06-11T02:31:44Z 2015-06-11T02:31:44Z 2015 2015 Final Year Project (FYP) http://hdl.handle.net/10356/65037 en Nanyang Technological University 52 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Bioengineering |
spellingShingle |
DRNTU::Engineering::Bioengineering Goh, Yi Ting Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
description |
This report explains a versatile strategy in using multi-functional mussel-inspired Polydopamine (PDA) in the development of well-defined single-nanoparticle@Metal-Organic Framework (MOF) core-shell nanohybrids. PDA has the ability in the formation of strong conformal coatings on colloidal substrates of any chemical composition and to initiate the heterogenous nucleation and growth of MOFs. These capabilities give rise to great potential in the customized structural integration of a wide array of inorganic or organic nanoparticles and functional MOFs. In addition, PDA possesses exceptional redox activity, which creates more opportunities in the alteration of the functionalities of the nanohybrids. This can be done by using localized reduction to insert plasmonic or catalytic metal nanostructures between the core and shell. The development of these core-shell nanohybrids, with its molecular size selectivity property from the MOF shell together with the intrinsic properties of the nanoparticle cores, signifies a distinct group of nanomaterials that has great potential in catalysis, sensing, and nanomedicine. This study mainly focuses on coating a PDA layer on the core and then encapsulating it with different MOF shells various nanoparticles. Further exploration of the strategy includes synthesizing the MagNP@PDA@AuNPs@MOF core-shell nanohybrids. The synthesis of Gold nanoparticles will be performed using the citrate reduction and seed-growth method. The TEM, SEM, UV-vis Spectroscopy and XRD will be used to monitor the growth of PDA and MOF around the core, to determine the size and shape of the nanoparticles and the thickness of PDA and MOF layers. |
author2 |
Duan Hong Wei |
author_facet |
Duan Hong Wei Goh, Yi Ting |
format |
Final Year Project |
author |
Goh, Yi Ting |
author_sort |
Goh, Yi Ting |
title |
Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
title_short |
Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
title_full |
Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
title_fullStr |
Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
title_full_unstemmed |
Versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
title_sort |
versatile core-shell nanoparticle@metal-organic framework nanohybrids : exploiting mussel-inspired polydopamine for tailored structural integration |
publishDate |
2015 |
url |
http://hdl.handle.net/10356/65037 |
_version_ |
1759855809760591872 |