Fiber optics chemical sensors based on responsive polymers

Fiber optic chemical sensors (FOCS) have made tremendous progress since developments began in the 1960s with continuous reports of new configurations, materials and applications even today. Techniques like interferometry and plasmonic resonance are set to form the next generation of FOCS, represen...

Full description

Saved in:
Bibliographic Details
Main Author: Tou, Zhi Qiang
Other Authors: Chan Chi Chiu
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/65269
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65269
record_format dspace
spelling sg-ntu-dr.10356-652692023-03-03T15:59:38Z Fiber optics chemical sensors based on responsive polymers Tou, Zhi Qiang Chan Chi Chiu School of Chemical and Biomedical Engineering DRNTU::Engineering::Bioengineering Fiber optic chemical sensors (FOCS) have made tremendous progress since developments began in the 1960s with continuous reports of new configurations, materials and applications even today. Techniques like interferometry and plasmonic resonance are set to form the next generation of FOCS, representing a deviation from conventional luminescence based techniques. The thesis presents an optic fiber sensor platform for localized surface plasmon resonance (LSPR) by using a speciality photonic crystal fiber (PCF) to excite LSPR via cladding modes. The sensor offers facile fabrication and achieves high refractive index sensitivity of -731 % transmittance/RIU with limit of detection (LOD) 1.76 x10-5 refractive index unit (RIU). Responsive polymers, exhibiting physio-chemical changes when exposed to specific stimuli are investigated for feasibility in FOCS based on LSPR and interferometry. A pH sensor is proposed by formation of a gold nanoparticles (AuNPs) embedded polyelectrolyte multilayer (PEM) consisting of Chitosan and poly(styrene sulfonate) (PSS) onto the forementioned sensor. The sensor exhibits pH responsiveness between physiological range of pH 6.5 to 8 and its behavior can be modeled by the Henderson-Hasselbach equation. The biocompatibility of the materials enables in-vivo application of the sensor. Interferometry FOCS using hydrogel as sensing material are investigated. Mach Zehnder interferometers (MZI) can be constructed from PCF. A proposed doublepass MZI shows higher Q factor and higher resolution than a single-pass MZI. By coating a thin poly(HEMA-co-DMAEM) hydrogel film, the MZI pH sensor shows a linear pH response with pH 6.75 to 8.25 (R2 = 0.986) with LOD pH 0.004. The sensor is successfully applied to the monitoring of cell culture media. A generalized approach in fabricating hydrogel based interferometric sensors is demonstrated through use of poly(vinyl alcohol) (PVA)-co- poly(acrylic acid) (PAA) hydrogel. The PVA/PAA offers tremendous ease in obtaining thin films on optical fiber via simple dip coating without need for additional cross linkers and polymerisation initiators. The carboxyl groups on PAA offer efficient coupling to a variety of aminated receptors using carbodiimide coupling to realise a myriad of sensing possibilities. The biocompatibility of both PVA and PAA also makes the proposed sensing film suitable for in-vivo applications. The sensor is demonstrated for sensing of small chemical species like Ni2+. It was found that sensitivity of the PVA/PAA is affected by the PVA/PAA ratio and duration of heat induced esterification which controls the degree of cross linking and the maximum amount of receptors that can be immobilised. The optimal PVA/PAA hydrogel is fabrication from a 12:6 wt % ratio and cross linked at 130 oC for 30 min. By modifying the PVA/PAA hydrogel with hydroxyquinoline, the sensor is able to detect Ni2+ with good sensitivity 0.214 nm/μM and LOD 1nM adequate for continuous monitoring of drinking water. DOCTOR OF PHILOSOPHY (SCBE) 2015-06-23T04:15:29Z 2015-06-23T04:15:29Z 2015 2015 Thesis Tou, Z. Q. (2015). Fiber optics chemical sensors based on responsive polymers. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65269 10.32657/10356/65269 en 175 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Bioengineering
spellingShingle DRNTU::Engineering::Bioengineering
Tou, Zhi Qiang
Fiber optics chemical sensors based on responsive polymers
description Fiber optic chemical sensors (FOCS) have made tremendous progress since developments began in the 1960s with continuous reports of new configurations, materials and applications even today. Techniques like interferometry and plasmonic resonance are set to form the next generation of FOCS, representing a deviation from conventional luminescence based techniques. The thesis presents an optic fiber sensor platform for localized surface plasmon resonance (LSPR) by using a speciality photonic crystal fiber (PCF) to excite LSPR via cladding modes. The sensor offers facile fabrication and achieves high refractive index sensitivity of -731 % transmittance/RIU with limit of detection (LOD) 1.76 x10-5 refractive index unit (RIU). Responsive polymers, exhibiting physio-chemical changes when exposed to specific stimuli are investigated for feasibility in FOCS based on LSPR and interferometry. A pH sensor is proposed by formation of a gold nanoparticles (AuNPs) embedded polyelectrolyte multilayer (PEM) consisting of Chitosan and poly(styrene sulfonate) (PSS) onto the forementioned sensor. The sensor exhibits pH responsiveness between physiological range of pH 6.5 to 8 and its behavior can be modeled by the Henderson-Hasselbach equation. The biocompatibility of the materials enables in-vivo application of the sensor. Interferometry FOCS using hydrogel as sensing material are investigated. Mach Zehnder interferometers (MZI) can be constructed from PCF. A proposed doublepass MZI shows higher Q factor and higher resolution than a single-pass MZI. By coating a thin poly(HEMA-co-DMAEM) hydrogel film, the MZI pH sensor shows a linear pH response with pH 6.75 to 8.25 (R2 = 0.986) with LOD pH 0.004. The sensor is successfully applied to the monitoring of cell culture media. A generalized approach in fabricating hydrogel based interferometric sensors is demonstrated through use of poly(vinyl alcohol) (PVA)-co- poly(acrylic acid) (PAA) hydrogel. The PVA/PAA offers tremendous ease in obtaining thin films on optical fiber via simple dip coating without need for additional cross linkers and polymerisation initiators. The carboxyl groups on PAA offer efficient coupling to a variety of aminated receptors using carbodiimide coupling to realise a myriad of sensing possibilities. The biocompatibility of both PVA and PAA also makes the proposed sensing film suitable for in-vivo applications. The sensor is demonstrated for sensing of small chemical species like Ni2+. It was found that sensitivity of the PVA/PAA is affected by the PVA/PAA ratio and duration of heat induced esterification which controls the degree of cross linking and the maximum amount of receptors that can be immobilised. The optimal PVA/PAA hydrogel is fabrication from a 12:6 wt % ratio and cross linked at 130 oC for 30 min. By modifying the PVA/PAA hydrogel with hydroxyquinoline, the sensor is able to detect Ni2+ with good sensitivity 0.214 nm/μM and LOD 1nM adequate for continuous monitoring of drinking water.
author2 Chan Chi Chiu
author_facet Chan Chi Chiu
Tou, Zhi Qiang
format Theses and Dissertations
author Tou, Zhi Qiang
author_sort Tou, Zhi Qiang
title Fiber optics chemical sensors based on responsive polymers
title_short Fiber optics chemical sensors based on responsive polymers
title_full Fiber optics chemical sensors based on responsive polymers
title_fullStr Fiber optics chemical sensors based on responsive polymers
title_full_unstemmed Fiber optics chemical sensors based on responsive polymers
title_sort fiber optics chemical sensors based on responsive polymers
publishDate 2015
url https://hdl.handle.net/10356/65269
_version_ 1759854266006110208