The study of joint-coupling in parallel manipulator design
A parallel manipulator (PM) is a closed-loop kinematic mechanism whose end-effector is connected to the base by several kinematic chains. PMs have attractive features of high speed, high accuracy, high pay load ratio and low inertia. However, lack in workspace dimensions, more complex direct kinemat...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Published: |
2008
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/6532 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Summary: | A parallel manipulator (PM) is a closed-loop kinematic mechanism whose end-effector is connected to the base by several kinematic chains. PMs have attractive features of high speed, high accuracy, high pay load ratio and low inertia. However, lack in workspace dimensions, more complex direct kinematics and singularities within the workspace make the applications of manipulators difficult. Singularity is the most serious among these drawbacks, because the manipulator loses or gains mobility and becomes uncontrollable in this condition. To overcome singularity conditions, the concept of joint-coupling (JC) is introduced and studied in this work. |
---|