Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development

Biosensors development as a multidisciplinary science has been attracting researchers in many ways such as testing novel strategies, understanding new interactions and realizing potential applications. This thesis describes simple nanoparticle-based assays for detections of critical targets in a rob...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Xiaohu
Other Authors: Bo Liedberg
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/65620
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65620
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences::Biochemistry
DRNTU::Science::Chemistry::Analytical chemistry
spellingShingle DRNTU::Science::Biological sciences::Biochemistry
DRNTU::Science::Chemistry::Analytical chemistry
Liu, Xiaohu
Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
description Biosensors development as a multidisciplinary science has been attracting researchers in many ways such as testing novel strategies, understanding new interactions and realizing potential applications. This thesis describes simple nanoparticle-based assays for detections of critical targets in a robust peptide-based manner. Potential improvement of sensitivity has been discussed in both peptide receptor side and nanoparticle transducer side. As a selected target, botulinum neurotoxin is one of the most dangerous toxins on the earth. The light chain of this toxin is a protease. Several assays for the light chain protease were then developed based on peptide-gold nanoparticle conjugates achieving different total assay time and limit of detection. In the first colorimetric mixing assay, two varied bio-functionalized particles were prepared. One was capped by novel designed biotinylated peptide substrates for botulinum neurotoxin, while the other was coated by neutravidin proteins. Immediate aggregation occurred after mixing them unless the biotinylated peptide substrates were pre-cleaved by the protease. A second way of detection, bridging assay utilized bi-biotinylated peptide substrates that caused the aggregation of neutravidin-particles. In the presence of light chain protease however the peptides were cleaved into halves resulting in no aggregation. Besides the colorimetric assays, fluorescence quenching assay was also developed using the same design of biotinylated peptide substrate-nanoparticle conjugates. With the help of a labeled streptavidin, the fluorescence was quenched by gold nanoparticles. Once the peptides were cleaved by protease, the fluorescence was recovered. Similarly a colorimetric assay was developed for human cardiac troponin I which is a critical biomarker of heart diseases. The peptide binder was adopted and redesigned for functionalizing gold nanoparticles. Due to the multivalent binding of peptides to troponin I, the peptide binder-nanoparticle conjugates aggregated soon after the addition of trace amount of targets. Improvement of sensitivity of biosensors is always favored but challenging especially when we are focusing on developing simple and robust sensors. On the receptor side, peptide binders are promising candidates of replacing antibodies with a higher robustness. They can be designed starting with peptide scaffolds and small ligands that specifically binding to targets. With fine tuning of the linker molecules in between, the final selected peptide binder will have a boosted binding affinity which will eventually improve the sensitivity of derived biosensors. Towards the same target of botulinum neurotoxin light chain, peptide binder scaffolds were proposed and synthesized. Similar ligand molecules were added to the scaffold including linkers resulting in various peptide binders for the toxin light chain. Unfortunately none of the products tested gave an acceptable binding affinity. Further effort must be done before concluding that it did not work. For instance, the peptide scaffold can be elongated as well as the linkers. On the transducer side, it is important to realize that the current colorimetric assays employing plasmonic concept is actually designed for use in combination with sophisticated equipment. In a real colorimetric assay for direct human eye detection the color change should take over rather than the peak shift. Gold-silver alloy nanoparticles were shown to be more suitable than pure gold nanoparticles by comparing their color changes. It is believed as well for a simple colorimetric assay the sensitivity will be improved when employing those alloy nanoparticles.
author2 Bo Liedberg
author_facet Bo Liedberg
Liu, Xiaohu
format Theses and Dissertations
author Liu, Xiaohu
author_sort Liu, Xiaohu
title Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
title_short Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
title_full Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
title_fullStr Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
title_full_unstemmed Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
title_sort peptide functionalized nanomaterial (metal nanoparticles) for biosensor development
publishDate 2015
url http://hdl.handle.net/10356/65620
_version_ 1759854535851900928
spelling sg-ntu-dr.10356-656202023-02-28T18:36:50Z Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development Liu, Xiaohu Bo Liedberg Liu Chuan Fa School of Biological Sciences Centre for Biomimetic Sensor Science DRNTU::Science::Biological sciences::Biochemistry DRNTU::Science::Chemistry::Analytical chemistry Biosensors development as a multidisciplinary science has been attracting researchers in many ways such as testing novel strategies, understanding new interactions and realizing potential applications. This thesis describes simple nanoparticle-based assays for detections of critical targets in a robust peptide-based manner. Potential improvement of sensitivity has been discussed in both peptide receptor side and nanoparticle transducer side. As a selected target, botulinum neurotoxin is one of the most dangerous toxins on the earth. The light chain of this toxin is a protease. Several assays for the light chain protease were then developed based on peptide-gold nanoparticle conjugates achieving different total assay time and limit of detection. In the first colorimetric mixing assay, two varied bio-functionalized particles were prepared. One was capped by novel designed biotinylated peptide substrates for botulinum neurotoxin, while the other was coated by neutravidin proteins. Immediate aggregation occurred after mixing them unless the biotinylated peptide substrates were pre-cleaved by the protease. A second way of detection, bridging assay utilized bi-biotinylated peptide substrates that caused the aggregation of neutravidin-particles. In the presence of light chain protease however the peptides were cleaved into halves resulting in no aggregation. Besides the colorimetric assays, fluorescence quenching assay was also developed using the same design of biotinylated peptide substrate-nanoparticle conjugates. With the help of a labeled streptavidin, the fluorescence was quenched by gold nanoparticles. Once the peptides were cleaved by protease, the fluorescence was recovered. Similarly a colorimetric assay was developed for human cardiac troponin I which is a critical biomarker of heart diseases. The peptide binder was adopted and redesigned for functionalizing gold nanoparticles. Due to the multivalent binding of peptides to troponin I, the peptide binder-nanoparticle conjugates aggregated soon after the addition of trace amount of targets. Improvement of sensitivity of biosensors is always favored but challenging especially when we are focusing on developing simple and robust sensors. On the receptor side, peptide binders are promising candidates of replacing antibodies with a higher robustness. They can be designed starting with peptide scaffolds and small ligands that specifically binding to targets. With fine tuning of the linker molecules in between, the final selected peptide binder will have a boosted binding affinity which will eventually improve the sensitivity of derived biosensors. Towards the same target of botulinum neurotoxin light chain, peptide binder scaffolds were proposed and synthesized. Similar ligand molecules were added to the scaffold including linkers resulting in various peptide binders for the toxin light chain. Unfortunately none of the products tested gave an acceptable binding affinity. Further effort must be done before concluding that it did not work. For instance, the peptide scaffold can be elongated as well as the linkers. On the transducer side, it is important to realize that the current colorimetric assays employing plasmonic concept is actually designed for use in combination with sophisticated equipment. In a real colorimetric assay for direct human eye detection the color change should take over rather than the peak shift. Gold-silver alloy nanoparticles were shown to be more suitable than pure gold nanoparticles by comparing their color changes. It is believed as well for a simple colorimetric assay the sensitivity will be improved when employing those alloy nanoparticles. ​Doctor of Philosophy (SBS) 2015-11-24T01:28:14Z 2015-11-24T01:28:14Z 2015 2015 Thesis Liu, X. (2015). Peptide functionalized nanomaterial (metal nanoparticles) for biosensor development. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/65620 en 197 p. application/pdf