Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design

The advancement in microwave theories along with fabrication capabilities of modern foundries in terms of material processing and improved microelectronic devices have brought about unprecedented MMIC designs in terms of its size, power and frequency of operation. Through the discussion of active de...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Hong Yi
Other Authors: Ng Geok Ing
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/10356/65822
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65822
record_format dspace
spelling sg-ntu-dr.10356-658222023-07-04T16:34:36Z Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design Lim, Hong Yi Ng Geok Ing School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering The advancement in microwave theories along with fabrication capabilities of modern foundries in terms of material processing and improved microelectronic devices have brought about unprecedented MMIC designs in terms of its size, power and frequency of operation. Through the discussion of active device modeling and innovative circuit design, this research work hopes to exploit the advancements in microelectronic devices and to achieve breakthrough in terms of circuit design methods and circuit performances. In this thesis, the empirical modeling for an AlGaN/GaN HEMT device capable of high power performance is described. The modeling for an AlGaN/GaN HEMT was selected due to the material characteristics of the device but the modeling procedures and empirical formulations are not limited to GaN based devices. The research work covers the modeling process from data acquisition to the characterization of the device using empirical formulas and the implementation of the proposed model in circuit simulators. From the bias independent small-signal linear model, the extrinsic parasitic parameters are extracted and subsequent modeling work is performed on the evaluated intrinsic device performance. Due to the large biasing voltages that can be applied on the HEMT device, emphasis was given to ensure that simulation will not result in errors and the characteristics are adequately modeled. A charge modeling method applied on the model allows the charge model to model the symmetrical nature of the HEMT device. The active current which represents a major non-linearity of the HEMT is modeled with a proposed new current model to more accurately capture the characteristics at critical regions of the device characterization. The forward diode current model is also described and a similar equation form is adopted for the breakdown current model. DOCTOR OF PHILOSOPHY (EEE) 2015-12-17T01:45:46Z 2015-12-17T01:45:46Z 2015 2015 Thesis Lim, H. Y. (2015). Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65822 10.32657/10356/65822 en 139 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Lim, Hong Yi
Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
description The advancement in microwave theories along with fabrication capabilities of modern foundries in terms of material processing and improved microelectronic devices have brought about unprecedented MMIC designs in terms of its size, power and frequency of operation. Through the discussion of active device modeling and innovative circuit design, this research work hopes to exploit the advancements in microelectronic devices and to achieve breakthrough in terms of circuit design methods and circuit performances. In this thesis, the empirical modeling for an AlGaN/GaN HEMT device capable of high power performance is described. The modeling for an AlGaN/GaN HEMT was selected due to the material characteristics of the device but the modeling procedures and empirical formulations are not limited to GaN based devices. The research work covers the modeling process from data acquisition to the characterization of the device using empirical formulas and the implementation of the proposed model in circuit simulators. From the bias independent small-signal linear model, the extrinsic parasitic parameters are extracted and subsequent modeling work is performed on the evaluated intrinsic device performance. Due to the large biasing voltages that can be applied on the HEMT device, emphasis was given to ensure that simulation will not result in errors and the characteristics are adequately modeled. A charge modeling method applied on the model allows the charge model to model the symmetrical nature of the HEMT device. The active current which represents a major non-linearity of the HEMT is modeled with a proposed new current model to more accurately capture the characteristics at critical regions of the device characterization. The forward diode current model is also described and a similar equation form is adopted for the breakdown current model.
author2 Ng Geok Ing
author_facet Ng Geok Ing
Lim, Hong Yi
format Theses and Dissertations
author Lim, Hong Yi
author_sort Lim, Hong Yi
title Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
title_short Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
title_full Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
title_fullStr Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
title_full_unstemmed Modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
title_sort modeling in microelectronics at microwave/millimeter-wave frequencies and innovative circuit design
publishDate 2015
url https://hdl.handle.net/10356/65822
_version_ 1772828050209112064