Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study

Unicompartmental knee arthroplasty (UKA) is well known as an effective treatment for osteoarthritis in recent years. Many studies have proven that UKA is efficient and reliable. However, complications after UKA cannot be eliminated. Fracture of proximal tibial is one of the critical failures studied...

Full description

Saved in:
Bibliographic Details
Main Author: Wu, Jiajun
Other Authors: Chou Siaw Meng
Format: Final Year Project
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/65829
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65829
record_format dspace
spelling sg-ntu-dr.10356-658292023-03-04T18:51:01Z Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study Wu, Jiajun Chou Siaw Meng School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Unicompartmental knee arthroplasty (UKA) is well known as an effective treatment for osteoarthritis in recent years. Many studies have proven that UKA is efficient and reliable. However, complications after UKA cannot be eliminated. Fracture of proximal tibial is one of the critical failures studied for many years without a proper solution. Such failure may be attributed by erroneous surgical techniques or improper patient selection. Understanding the cause of fracture may help the surgeon avoid mistakes during surgery as well as preselection of appropriate patient for this treatment. This project used finite element analysis to evaluate the stress distribution on the proximal tibial following UKA. A three-dimensional (3D) tibia bone model was created with computed tomography (CT) scan data obtained from a human knee. The 3D model was used to investigate the effect of resection angle and extended saw-cut at the L-cut region on the stress distribution of the proximal tibial. This study found that smaller angle of resection slope lowers the stresses on the proximal tibial and extended saw-cut dramatically increases the stress concentration at the web cut region. Further work may include validation of the finite element model using the same cadaveric bone as the experiment and the stress distribution during a gait cycle after UKA. Bachelor of Engineering (Mechanical Engineering) 2015-12-22T00:44:49Z 2015-12-22T00:44:49Z 2015 2015 Final Year Project (FYP) http://hdl.handle.net/10356/65829 en Nanyang Technological University 89 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Wu, Jiajun
Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
description Unicompartmental knee arthroplasty (UKA) is well known as an effective treatment for osteoarthritis in recent years. Many studies have proven that UKA is efficient and reliable. However, complications after UKA cannot be eliminated. Fracture of proximal tibial is one of the critical failures studied for many years without a proper solution. Such failure may be attributed by erroneous surgical techniques or improper patient selection. Understanding the cause of fracture may help the surgeon avoid mistakes during surgery as well as preselection of appropriate patient for this treatment. This project used finite element analysis to evaluate the stress distribution on the proximal tibial following UKA. A three-dimensional (3D) tibia bone model was created with computed tomography (CT) scan data obtained from a human knee. The 3D model was used to investigate the effect of resection angle and extended saw-cut at the L-cut region on the stress distribution of the proximal tibial. This study found that smaller angle of resection slope lowers the stresses on the proximal tibial and extended saw-cut dramatically increases the stress concentration at the web cut region. Further work may include validation of the finite element model using the same cadaveric bone as the experiment and the stress distribution during a gait cycle after UKA.
author2 Chou Siaw Meng
author_facet Chou Siaw Meng
Wu, Jiajun
format Final Year Project
author Wu, Jiajun
author_sort Wu, Jiajun
title Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
title_short Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
title_full Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
title_fullStr Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
title_full_unstemmed Proximal tibial strains following unicompartmental knee arthroplasty (UKA) : a finite element study
title_sort proximal tibial strains following unicompartmental knee arthroplasty (uka) : a finite element study
publishDate 2015
url http://hdl.handle.net/10356/65829
_version_ 1759853110388326400