Fabrication and properties of oxide semiconductor nanowires

Semiconductor nanowires have been intensively studied because of their novel properties in the past two decades. Lots of interesting nanostructures have been demonstrated via the famous vapor-liquid-solid (VLS) mechanism. This bottom-up synthesis is significant for extensive applications in sensing,...

Full description

Saved in:
Bibliographic Details
Main Author: Shen, Youde
Other Authors: Wu Tao
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/65879
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65879
record_format dspace
spelling sg-ntu-dr.10356-658792023-02-28T23:57:21Z Fabrication and properties of oxide semiconductor nanowires Shen, Youde Wu Tao School of Physical and Mathematical Sciences Wang Qijie DRNTU::Engineering::Nanotechnology Semiconductor nanowires have been intensively studied because of their novel properties in the past two decades. Lots of interesting nanostructures have been demonstrated via the famous vapor-liquid-solid (VLS) mechanism. This bottom-up synthesis is significant for extensive applications in sensing, photonics, electronics and energy conversion. Studying nanowire growth behaviour and controlling nanowire morphology are the central theme in nanoscience and nanotechnology. Herein, we bring insights to the conventional VLS growth mechanism in the growth of lateral and kinked nanowires and advance the study of Gibbs-Thomson effect in planar nanowires growth. We report the growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires. Those differently oriented nanowires could be grown on yttria-stabilized zirconia (YSZ) substrates with an epitaxial relationship in the VLS mechanism. The growth temperature is the only parameter to be regulated. Our (scanning) transmission electron microscopy and reciprocal space mapping experiments revealed that the substrate-nanowire epitaxy had essential role in the growth of oriented in-plane and out-of-plane nanowires at the higher growth temperatures. On the contrary, the randomly oriented nanowires grew at lower growth temperature. In addition, the control of the symmetry, orientation and structure of the nanowires was also demonstrated by using (110) and (111) YSZ substrates. Based on these results, we obtained regular arrays of lateral ITO nanowires by using patterned Au catalyst nanoparticles. Furthermore, we demonstrate the direct observations of the Gibbs-Thomson effect in planar nanowires for the first time. Our systematic studies showed that the growth velocity of planar indium tin oxide (ITO) NWs conformed to Gibbs-Thomson effect and could be modulated by tin doping concentrations in spite of their rich growth directions and complex shapes. A growth model based on the surface energy was developed to explain the increasing cutoff diameter with decreasing tin doping concentration and the different cutoff diameter on different oriented substrates. We demonstrated the unprecedented growth behaviors of indium oxide (IO) nanostructures and revealed the important function of the tin dopants. At last, we report the growth of kinked single-crystalline In2O3 nanostructures consisting of nanocone base and nanowire tip connected without any twin boundaries or stacking faults. During the tailored growth, when the diameter of gold catalyst nanoparticle at the apex of the nanocone shrunk to ~100 nm as a result of the gold atom migration, the growth direction switched from [111] to either [110] or [112], depending on the growth conditions. Our results indicated that the size-dependent free energies of different oriented nanowires dictated the switching of growth directions, and the mechanism of forming such novel nanocone-nanowire kinked nanostructure may be universal for a wide range of functional materials. DOCTOR OF PHILOSOPHY (SPMS) 2016-01-11T01:37:27Z 2016-01-11T01:37:27Z 2016 Thesis Shen, Y. (2016). Fabrication and properties of oxide semiconductor nanowires. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65879 10.32657/10356/65879 en 162 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Nanotechnology
spellingShingle DRNTU::Engineering::Nanotechnology
Shen, Youde
Fabrication and properties of oxide semiconductor nanowires
description Semiconductor nanowires have been intensively studied because of their novel properties in the past two decades. Lots of interesting nanostructures have been demonstrated via the famous vapor-liquid-solid (VLS) mechanism. This bottom-up synthesis is significant for extensive applications in sensing, photonics, electronics and energy conversion. Studying nanowire growth behaviour and controlling nanowire morphology are the central theme in nanoscience and nanotechnology. Herein, we bring insights to the conventional VLS growth mechanism in the growth of lateral and kinked nanowires and advance the study of Gibbs-Thomson effect in planar nanowires growth. We report the growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires. Those differently oriented nanowires could be grown on yttria-stabilized zirconia (YSZ) substrates with an epitaxial relationship in the VLS mechanism. The growth temperature is the only parameter to be regulated. Our (scanning) transmission electron microscopy and reciprocal space mapping experiments revealed that the substrate-nanowire epitaxy had essential role in the growth of oriented in-plane and out-of-plane nanowires at the higher growth temperatures. On the contrary, the randomly oriented nanowires grew at lower growth temperature. In addition, the control of the symmetry, orientation and structure of the nanowires was also demonstrated by using (110) and (111) YSZ substrates. Based on these results, we obtained regular arrays of lateral ITO nanowires by using patterned Au catalyst nanoparticles. Furthermore, we demonstrate the direct observations of the Gibbs-Thomson effect in planar nanowires for the first time. Our systematic studies showed that the growth velocity of planar indium tin oxide (ITO) NWs conformed to Gibbs-Thomson effect and could be modulated by tin doping concentrations in spite of their rich growth directions and complex shapes. A growth model based on the surface energy was developed to explain the increasing cutoff diameter with decreasing tin doping concentration and the different cutoff diameter on different oriented substrates. We demonstrated the unprecedented growth behaviors of indium oxide (IO) nanostructures and revealed the important function of the tin dopants. At last, we report the growth of kinked single-crystalline In2O3 nanostructures consisting of nanocone base and nanowire tip connected without any twin boundaries or stacking faults. During the tailored growth, when the diameter of gold catalyst nanoparticle at the apex of the nanocone shrunk to ~100 nm as a result of the gold atom migration, the growth direction switched from [111] to either [110] or [112], depending on the growth conditions. Our results indicated that the size-dependent free energies of different oriented nanowires dictated the switching of growth directions, and the mechanism of forming such novel nanocone-nanowire kinked nanostructure may be universal for a wide range of functional materials.
author2 Wu Tao
author_facet Wu Tao
Shen, Youde
format Theses and Dissertations
author Shen, Youde
author_sort Shen, Youde
title Fabrication and properties of oxide semiconductor nanowires
title_short Fabrication and properties of oxide semiconductor nanowires
title_full Fabrication and properties of oxide semiconductor nanowires
title_fullStr Fabrication and properties of oxide semiconductor nanowires
title_full_unstemmed Fabrication and properties of oxide semiconductor nanowires
title_sort fabrication and properties of oxide semiconductor nanowires
publishDate 2016
url https://hdl.handle.net/10356/65879
_version_ 1759857757720150016