Strain effects on semiconducting two-dimensional crystals

Two-dimensional (2D) semiconducting layered materials have attracted widespread research interest recently not only from the fundamental point of view, but also because of their great possibilities in next-generation electronic devices, valleytronics, photodetectors, and flexible optoelectronics app...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Yanlong
Other Authors: Yu Ting
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/65945
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-65945
record_format dspace
spelling sg-ntu-dr.10356-659452023-02-28T23:55:36Z Strain effects on semiconducting two-dimensional crystals Wang, Yanlong Yu Ting School of Physical and Mathematical Sciences DRNTU::Science::Chemistry Two-dimensional (2D) semiconducting layered materials have attracted widespread research interest recently not only from the fundamental point of view, but also because of their great possibilities in next-generation electronic devices, valleytronics, photodetectors, and flexible optoelectronics applications due to their as-born bandgaps and other unique properties. Strain, which can be used to alter and control the properties of these 2D semiconducting materials, thus enables the exploration of novel fundamental physics and applications of these materials. In this thesis, we present the band structure evolutions and lattice vibrational responses in 2D MS2 (M=Mo, W) and BP crystals under uniaxial tensile strain through a combination of in situ photoluminescence and Raman spectroscopy studies, as well as density functional theory (DFT) calculations. As uniaxially strained monolayer WS2 is theoretically predicted to undergo a direct-indirect bandgap transition which may limit its optoelectronic applications, it is important to accurately determine the critical strain to induce such transition. We have experimentally demonstrated the possibility of tuning different optical transition energies and their relative spectral weight in monolayer WS2 by applying uniaxial strain. This tuneable optical property is attributed to the strain-induced direct-indirect bandgap transition and confirmed by DFT calculations. In addition, slight lowering of the trion dissociation energy with increasing uniaxial strain is observed. Not only the band structure engineering, but also the crystallographic orientation determination could be achieved by the strain in TMDs. Crystal orientation can significantly determine the properties of TMD materials, which necessitates a convenient and reliable way to identify it. Our in situ Raman spectroscopy study reveals uniaxial tensile strain can soften the in-plane E' phonon mode and even lift its two-fold degeneracy as reflected by a doublet splitting. We further show that the polarizations of the scattered light from these two splitted modes are linear and orthogonal. Moreover, the polarization dependence of the two sub-bands could be adopted to identify the crystal orientation and confirms the observed zigzag-oriented edge of monolayer WS2 grown by chemical vapour deposition method in previous studies. BP possesses the remarkably anisotropic mechanical properties as a result of its unique puckered structure, so it is critical to understand how the anisotropic behaviors can be modulated by strain for the better integration of BP into various technologies, such as flexible electronics. It is found that the out-of-plane A_g^1 mode is sensitive to uniaxial tensile strain along the armchair direction while the in-plane B2g and A_g^2 modes are susceptible to the zigzag direction strain. Our DFT calculation results clearly illustrate the anisotropic influence of uniaxial strain on structural properties of few-layer BP owing to its unique puckered crystal structure and could be used to elucidate the striking dependence of strained phonon frequencies on crystal orientations. Our work suggests that strain engineering holds a promising future for extensive modulation of optical and mechanical properties in semiconducting layered materials. This study indeed enriches our understanding of strained states of 2D crystals and further lays a foundation for developing various applications of such emerging semiconducting layered materials based on their strain dependent properties, such as flexible optoelectronic devices. DOCTOR OF PHILOSOPHY (SPMS) 2016-02-02T04:48:25Z 2016-02-02T04:48:25Z 2016 Thesis Wang, Y. (2016). Strain effects on semiconducting two-dimensional crystals. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65945 10.32657/10356/65945 en 146 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Chemistry
spellingShingle DRNTU::Science::Chemistry
Wang, Yanlong
Strain effects on semiconducting two-dimensional crystals
description Two-dimensional (2D) semiconducting layered materials have attracted widespread research interest recently not only from the fundamental point of view, but also because of their great possibilities in next-generation electronic devices, valleytronics, photodetectors, and flexible optoelectronics applications due to their as-born bandgaps and other unique properties. Strain, which can be used to alter and control the properties of these 2D semiconducting materials, thus enables the exploration of novel fundamental physics and applications of these materials. In this thesis, we present the band structure evolutions and lattice vibrational responses in 2D MS2 (M=Mo, W) and BP crystals under uniaxial tensile strain through a combination of in situ photoluminescence and Raman spectroscopy studies, as well as density functional theory (DFT) calculations. As uniaxially strained monolayer WS2 is theoretically predicted to undergo a direct-indirect bandgap transition which may limit its optoelectronic applications, it is important to accurately determine the critical strain to induce such transition. We have experimentally demonstrated the possibility of tuning different optical transition energies and their relative spectral weight in monolayer WS2 by applying uniaxial strain. This tuneable optical property is attributed to the strain-induced direct-indirect bandgap transition and confirmed by DFT calculations. In addition, slight lowering of the trion dissociation energy with increasing uniaxial strain is observed. Not only the band structure engineering, but also the crystallographic orientation determination could be achieved by the strain in TMDs. Crystal orientation can significantly determine the properties of TMD materials, which necessitates a convenient and reliable way to identify it. Our in situ Raman spectroscopy study reveals uniaxial tensile strain can soften the in-plane E' phonon mode and even lift its two-fold degeneracy as reflected by a doublet splitting. We further show that the polarizations of the scattered light from these two splitted modes are linear and orthogonal. Moreover, the polarization dependence of the two sub-bands could be adopted to identify the crystal orientation and confirms the observed zigzag-oriented edge of monolayer WS2 grown by chemical vapour deposition method in previous studies. BP possesses the remarkably anisotropic mechanical properties as a result of its unique puckered structure, so it is critical to understand how the anisotropic behaviors can be modulated by strain for the better integration of BP into various technologies, such as flexible electronics. It is found that the out-of-plane A_g^1 mode is sensitive to uniaxial tensile strain along the armchair direction while the in-plane B2g and A_g^2 modes are susceptible to the zigzag direction strain. Our DFT calculation results clearly illustrate the anisotropic influence of uniaxial strain on structural properties of few-layer BP owing to its unique puckered crystal structure and could be used to elucidate the striking dependence of strained phonon frequencies on crystal orientations. Our work suggests that strain engineering holds a promising future for extensive modulation of optical and mechanical properties in semiconducting layered materials. This study indeed enriches our understanding of strained states of 2D crystals and further lays a foundation for developing various applications of such emerging semiconducting layered materials based on their strain dependent properties, such as flexible optoelectronic devices.
author2 Yu Ting
author_facet Yu Ting
Wang, Yanlong
format Theses and Dissertations
author Wang, Yanlong
author_sort Wang, Yanlong
title Strain effects on semiconducting two-dimensional crystals
title_short Strain effects on semiconducting two-dimensional crystals
title_full Strain effects on semiconducting two-dimensional crystals
title_fullStr Strain effects on semiconducting two-dimensional crystals
title_full_unstemmed Strain effects on semiconducting two-dimensional crystals
title_sort strain effects on semiconducting two-dimensional crystals
publishDate 2016
url https://hdl.handle.net/10356/65945
_version_ 1759857509566251008