Feature representation for large scale classification
Feature representation plays the center role for classification. The extraction of knowledge in data, whether through pre-defined functions or procedures, or through learned projection matrices or neural networks, is crucial for the success of a large scale classification system. In this dissertatio...
Saved in:
主要作者: | Yang, Hao |
---|---|
其他作者: | Cai Jianfei |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/66203 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Practical large scale classification with additive kernels
由: Yang, Hao, et al.
出版: (2014) -
Disentangled feature representation for few-shot image classification
由: Cheng, Hao, et al.
出版: (2023) -
Power mean SVM for large scale visual classification
由: Wu, Jianxin
出版: (2013) -
Large-scale reuse through a novel software representation
由: Hoi, Chin Pang.
出版: (2008) -
Computationally efficient models for high-dimensional and large-scale classification problems
由: Ma, Li
出版: (2009)