Improved low rank representation : kernelization, efficient optimization and applications
Given data sampled from multiple subspaces, the goal of subspace clustering is to partition data into several clusters, so that each cluster exactly corresponds to one subspace. Initially proposed for subspace clustering, the low rank representation (LRR) approach has shown promising results in vari...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/66234 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |