Optical properties of octahedra core-shell structures
In recent years, the optical properties of metallic nanoparticles have been a subject of great interest due to the possibilities that they offer for a diverse range of technologies, particularly in the field of biomedicine. An excellent example of such an application would be localized surface plasm...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/66389 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-66389 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-663892023-03-04T15:36:41Z Optical properties of octahedra core-shell structures Lim, Xin Yi Li Shuzhou School of Materials Science and Engineering DRNTU::Engineering::Materials::Nanostructured materials In recent years, the optical properties of metallic nanoparticles have been a subject of great interest due to the possibilities that they offer for a diverse range of technologies, particularly in the field of biomedicine. An excellent example of such an application would be localized surface plasmon resonance (LSPR) biosensing, which makes use of changes in the LSPR extinction peak of metallic nanoparticles to detect biological interactions. The metallic nanoparticles applied have to be coated to enhance their stability, and to enable functionalization. This paper aims to examine the critical thickness of this coating layer, which is the maximum thickness of coating material that the metallic nanoparticle can be coated with before the biosensor becomes insensitive. Simulations for different shapes and sizes of gold and silver nanoparticles, coated with polyethylene glycol and polyvinylpyrrolidone, were carried out to track changes in the LSPR extinction peak as the coating thickness is increased in each scenario. The critical thickness of polymer is then determined when a further increase in coating thickness fails to produce significant changes in the LSPR extinction peak. From the results, it can be observed that the critical thickness of polymer coating varies with the refractive index of the coating material, as well as the shape, size and material of the nanoparticle. Larger nanoparticle sizes, polymer coatings with higher refractive indices, more refractive index sensitive plasmonic materials, and ellipsoids in the longitudinal direction will all result in higher critical thicknesses. In the near future, these results may have significant impacts on the design of LSPR biosensors. Further research can also be carried out to expand the investigation to cover a wider range of materials and morphology. LSPR biosensors can then be better optimized using these results to increase its efficiency. Bachelor of Engineering (Materials Engineering) 2016-04-01T02:57:49Z 2016-04-01T02:57:49Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66389 en Nanyang Technological University 72 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Nanostructured materials |
spellingShingle |
DRNTU::Engineering::Materials::Nanostructured materials Lim, Xin Yi Optical properties of octahedra core-shell structures |
description |
In recent years, the optical properties of metallic nanoparticles have been a subject of great interest due to the possibilities that they offer for a diverse range of technologies, particularly in the field of biomedicine. An excellent example of such an application would be localized surface plasmon resonance (LSPR) biosensing, which makes use of changes in the LSPR extinction peak of metallic nanoparticles to detect biological interactions. The metallic nanoparticles applied have to be coated to enhance their stability, and to enable functionalization.
This paper aims to examine the critical thickness of this coating layer, which is the maximum thickness of coating material that the metallic nanoparticle can be coated with before the biosensor becomes insensitive. Simulations for different shapes and sizes of gold and silver nanoparticles, coated with polyethylene glycol and polyvinylpyrrolidone, were carried out to track changes in the LSPR extinction peak as the coating thickness is increased in each scenario. The critical thickness of polymer is then determined when a further increase in coating thickness fails to produce significant changes in the LSPR extinction peak.
From the results, it can be observed that the critical thickness of polymer coating varies with the refractive index of the coating material, as well as the shape, size and material of the nanoparticle. Larger nanoparticle sizes, polymer coatings with higher refractive indices, more refractive index sensitive plasmonic materials, and ellipsoids in the longitudinal direction will all result in higher critical thicknesses.
In the near future, these results may have significant impacts on the design of LSPR biosensors. Further research can also be carried out to expand the investigation to cover a wider range of materials and morphology. LSPR biosensors can then be better optimized using these results to increase its efficiency. |
author2 |
Li Shuzhou |
author_facet |
Li Shuzhou Lim, Xin Yi |
format |
Final Year Project |
author |
Lim, Xin Yi |
author_sort |
Lim, Xin Yi |
title |
Optical properties of octahedra core-shell structures |
title_short |
Optical properties of octahedra core-shell structures |
title_full |
Optical properties of octahedra core-shell structures |
title_fullStr |
Optical properties of octahedra core-shell structures |
title_full_unstemmed |
Optical properties of octahedra core-shell structures |
title_sort |
optical properties of octahedra core-shell structures |
publishDate |
2016 |
url |
http://hdl.handle.net/10356/66389 |
_version_ |
1759854358169649152 |