Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production

Fossil fuel dependency has raised serious environmental and resource depletion concerns. Amidst news of worsening climate conditions and air pollution, technologies to harness renewable energy have garnered great interest. Photocatalytic water splitting to produce hydrogen as an alternative clean fu...

Full description

Saved in:
Bibliographic Details
Main Author: Yeo, Loo Pin
Other Authors: Xue Can
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/66419
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-66419
record_format dspace
spelling sg-ntu-dr.10356-664192023-03-04T15:33:38Z Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production Yeo, Loo Pin Xue Can School of Materials Science and Engineering DRNTU::Engineering Fossil fuel dependency has raised serious environmental and resource depletion concerns. Amidst news of worsening climate conditions and air pollution, technologies to harness renewable energy have garnered great interest. Photocatalytic water splitting to produce hydrogen as an alternative clean fuel has been widely researched as a potential solution. Polymeric graphitic carbon nitride (g-C3N4) has been identified as a promising photocatalyst with a suitable electronic band structure for water splitting. However, the hydrogen evolution activity of pure g-C3N4 is limited due to low light absorption and high rate of electron-hole pair recombination. Coupling g-C3N4 with cocatalysts such as metal sulfides has greatly improved photocatalytic activity. This study aims to further enhance photocatalytic activities by incorporating novel heterobimetallic sulfide cocatalysts instead of the monometallic sulfide cocatalysts that have been frequently studied. g-C3N4 with heterobimetallic CoMoSx cocatalysts were prepared along with MoS2/g-C3N4, CoS/g-C3N4 and pure g-C3N4 samples via hydrothermal method to facilitate comparison of their hydrogen evolution activity. The properties of the photocatalysts were characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis) and Photoluminescence (PL) Spectroscopy. TEM and PL results indicate that the morphological differences in CoMoSx/g-C3N4 can further reduce rate of electron-hole pair recombination, thus enhancing hydrogen evolution. CoMoSx/g-C3N4 showed the greatest hydrogen evolution rate of 1.02 μmol h-1 which is approximately 11.4 times improved compared to the photocatalytic activity of MoS2/g-C3N4. Bachelor of Engineering (Materials Engineering) 2016-04-05T06:47:47Z 2016-04-05T06:47:47Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66419 en Nanyang Technological University 39 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Yeo, Loo Pin
Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
description Fossil fuel dependency has raised serious environmental and resource depletion concerns. Amidst news of worsening climate conditions and air pollution, technologies to harness renewable energy have garnered great interest. Photocatalytic water splitting to produce hydrogen as an alternative clean fuel has been widely researched as a potential solution. Polymeric graphitic carbon nitride (g-C3N4) has been identified as a promising photocatalyst with a suitable electronic band structure for water splitting. However, the hydrogen evolution activity of pure g-C3N4 is limited due to low light absorption and high rate of electron-hole pair recombination. Coupling g-C3N4 with cocatalysts such as metal sulfides has greatly improved photocatalytic activity. This study aims to further enhance photocatalytic activities by incorporating novel heterobimetallic sulfide cocatalysts instead of the monometallic sulfide cocatalysts that have been frequently studied. g-C3N4 with heterobimetallic CoMoSx cocatalysts were prepared along with MoS2/g-C3N4, CoS/g-C3N4 and pure g-C3N4 samples via hydrothermal method to facilitate comparison of their hydrogen evolution activity. The properties of the photocatalysts were characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis) and Photoluminescence (PL) Spectroscopy. TEM and PL results indicate that the morphological differences in CoMoSx/g-C3N4 can further reduce rate of electron-hole pair recombination, thus enhancing hydrogen evolution. CoMoSx/g-C3N4 showed the greatest hydrogen evolution rate of 1.02 μmol h-1 which is approximately 11.4 times improved compared to the photocatalytic activity of MoS2/g-C3N4.
author2 Xue Can
author_facet Xue Can
Yeo, Loo Pin
format Final Year Project
author Yeo, Loo Pin
author_sort Yeo, Loo Pin
title Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
title_short Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
title_full Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
title_fullStr Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
title_full_unstemmed Synthesis of amorphous CoMoSx/g-C3N4 photocatalyst for enhanced solar hydrogen production
title_sort synthesis of amorphous comosx/g-c3n4 photocatalyst for enhanced solar hydrogen production
publishDate 2016
url http://hdl.handle.net/10356/66419
_version_ 1759857260425641984