Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease

The current treatments for Peripheral Artery Disease (PAD) generally lead to restenosis at the site of intervention, with only 33% of the patients have a patent artery one year after procedure. The use of anti-proliferative drugs, such as Paclitaxel (PTX) and Sirolimus, have been demonstrated to be...

Full description

Saved in:
Bibliographic Details
Main Author: Welly, Seisilya
Other Authors: Subramanian Venkatraman
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/66592
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-66592
record_format dspace
spelling sg-ntu-dr.10356-665922023-03-04T15:40:00Z Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease Welly, Seisilya Subramanian Venkatraman School of Materials Science and Engineering DRNTU::Engineering The current treatments for Peripheral Artery Disease (PAD) generally lead to restenosis at the site of intervention, with only 33% of the patients have a patent artery one year after procedure. The use of anti-proliferative drugs, such as Paclitaxel (PTX) and Sirolimus, have been demonstrated to be successful in the treatment of restenosis in the coronary artery. However, limited success was reflected in the case of PAD. This is due to the higher probability of calcification and longer area of blockage in the peripheral artery as compared to that in the coronary artery. Being inspired by the properties of liposomes as a drug delivery carrier to release therapeutic agents sustainably, this project aims to encapsulate PTX and Sirolimus in liposomes to prevent restenosis after angioplasty procedure in PAD. Two types of lipids, namely egg phosphatidylcholine (EPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used to encapsulate 5 mole % of PTX. In vitro release from both formulations, as well as their liposomes size and encapsulated drug stability over the time, were characterized. Results show that PTX could be released sustainably, with negligible burst release. However, EPC formulation possessed faster release characteristics compared to POPC formulation. The encapsulated PTX in both formulations was stable at 4 oC throughout the study. As for liposomes size, POPC formulation was much more stable as compared to EPC formulation. For Sirolimus, 7.6 mole % of Sirolimus was loaded into EPC liposome and in vitro release, size and drug stability were determined. In vitro release of Sirolimus showed 30% of burst release at the first 3 hour, followed by sustained releasing of the drug in the next 28 days. Sirolimus formulation shows better drug and size stability while stored in 4 oC than that in 37 oC. In conclusion, PTX and Sirolimus have been successfully encapsulated into liposomes and sustained release of both drugs were achieved. All the formulations demonstrated good stability in terms of liposomes size and drug stability at 4 oC for at least one month. These formulations would be useful in reducing restenosis and their efficacy will be determined in vivo in the future study. Bachelor of Engineering (Materials Engineering) 2016-04-18T07:27:00Z 2016-04-18T07:27:00Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66592 en Nanyang Technological University 50 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Welly, Seisilya
Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
description The current treatments for Peripheral Artery Disease (PAD) generally lead to restenosis at the site of intervention, with only 33% of the patients have a patent artery one year after procedure. The use of anti-proliferative drugs, such as Paclitaxel (PTX) and Sirolimus, have been demonstrated to be successful in the treatment of restenosis in the coronary artery. However, limited success was reflected in the case of PAD. This is due to the higher probability of calcification and longer area of blockage in the peripheral artery as compared to that in the coronary artery. Being inspired by the properties of liposomes as a drug delivery carrier to release therapeutic agents sustainably, this project aims to encapsulate PTX and Sirolimus in liposomes to prevent restenosis after angioplasty procedure in PAD. Two types of lipids, namely egg phosphatidylcholine (EPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used to encapsulate 5 mole % of PTX. In vitro release from both formulations, as well as their liposomes size and encapsulated drug stability over the time, were characterized. Results show that PTX could be released sustainably, with negligible burst release. However, EPC formulation possessed faster release characteristics compared to POPC formulation. The encapsulated PTX in both formulations was stable at 4 oC throughout the study. As for liposomes size, POPC formulation was much more stable as compared to EPC formulation. For Sirolimus, 7.6 mole % of Sirolimus was loaded into EPC liposome and in vitro release, size and drug stability were determined. In vitro release of Sirolimus showed 30% of burst release at the first 3 hour, followed by sustained releasing of the drug in the next 28 days. Sirolimus formulation shows better drug and size stability while stored in 4 oC than that in 37 oC. In conclusion, PTX and Sirolimus have been successfully encapsulated into liposomes and sustained release of both drugs were achieved. All the formulations demonstrated good stability in terms of liposomes size and drug stability at 4 oC for at least one month. These formulations would be useful in reducing restenosis and their efficacy will be determined in vivo in the future study.
author2 Subramanian Venkatraman
author_facet Subramanian Venkatraman
Welly, Seisilya
format Final Year Project
author Welly, Seisilya
author_sort Welly, Seisilya
title Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
title_short Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
title_full Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
title_fullStr Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
title_full_unstemmed Formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
title_sort formulation and in vitro release study of drug loaded liposomes for peripheral artery disease
publishDate 2016
url http://hdl.handle.net/10356/66592
_version_ 1759854176232275968