BaSO4/PLLA nanocomposite material for coronary stent application

This final year project investigated the effect of adding barium sulfate (BaSO4) nanoparticles on the mechanical properties of poly-l-lactic acid (PLLA) such as ultimate tensile strength (UTS), percent elongation at break, Young’s and compressive modulus so as to assess its suitability as a coronary...

Full description

Saved in:
Bibliographic Details
Main Author: Chow, Wei Shoon
Other Authors: Subramanian Venkatraman
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/66697
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-66697
record_format dspace
spelling sg-ntu-dr.10356-666972023-03-04T15:38:31Z BaSO4/PLLA nanocomposite material for coronary stent application Chow, Wei Shoon Subramanian Venkatraman School of Materials Science and Engineering DRNTU::Engineering This final year project investigated the effect of adding barium sulfate (BaSO4) nanoparticles on the mechanical properties of poly-l-lactic acid (PLLA) such as ultimate tensile strength (UTS), percent elongation at break, Young’s and compressive modulus so as to assess its suitability as a coronary stent. In this study, nanoparticle loading, size, and functionalization were taken into consideration so as to understand its effects on tensile and compressive properties. Tensile tests were conducted on BaSO4/PLLA nanocomposite fibres while BaSO4/PLLA nanocomposite tubes were evaluated with a compression test. Results highlighted that the addition of BaSO4 nanoparticles did raise the mean Young’s Modulus of BaSO4/PLLA fibre by a range of 11.68% to 17.61% and 8.94% to 21.70% for 20nm and 100nm BaSO4/PLLA respectively up till a certain particle percentage weight loading before regression occurs. UTS of BaSO4/PLLA fibre followed a similar trend to Young’s modulus and was increased by 62.23% to 118.10% and 66.48% to 83.03% for 20nm and 100nm BaSO4/PLLA respectively. However, percent elongation at break was found to be lower than pure PLLA fibre across all tested particle loadings. Compressive modulus increased with the addition of BaSO4 nanoparticles by 29.52% to 62.59%. Comparison between different sizes of BaSO4 nanoparticles in PLLA matrix did not yield notable trends or differences in tensile properties due to agglomeration of nanoparticles. Stearic acid (STE) functionalized BaSO4 in PLLA was then assessed to counter aforementioned issues but there was insignificance of Young’s Modulus and UTS increment over unfunctionalized BaSO4/PLLA. However, percent elongation at break did improve comparatively across all tested particle weight loading by 29.07% to 199.24%. In conclusion, with suitable conditions, the introduction of BaSO4 nanoparticles could possibly augment the mechanical properties of a biodegradable polymeric stent. Nevertheless, alternate forms of functionalization or fabrication tools with the ability to distribute nanoparticles uniformly should be explored to maximise the mechanical properties of BaSO4/PLLA nanocomposite material for coronary stent application. Bachelor of Engineering (Materials Engineering) 2016-04-21T03:31:32Z 2016-04-21T03:31:32Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66697 en Nanyang Technological University 50 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Chow, Wei Shoon
BaSO4/PLLA nanocomposite material for coronary stent application
description This final year project investigated the effect of adding barium sulfate (BaSO4) nanoparticles on the mechanical properties of poly-l-lactic acid (PLLA) such as ultimate tensile strength (UTS), percent elongation at break, Young’s and compressive modulus so as to assess its suitability as a coronary stent. In this study, nanoparticle loading, size, and functionalization were taken into consideration so as to understand its effects on tensile and compressive properties. Tensile tests were conducted on BaSO4/PLLA nanocomposite fibres while BaSO4/PLLA nanocomposite tubes were evaluated with a compression test. Results highlighted that the addition of BaSO4 nanoparticles did raise the mean Young’s Modulus of BaSO4/PLLA fibre by a range of 11.68% to 17.61% and 8.94% to 21.70% for 20nm and 100nm BaSO4/PLLA respectively up till a certain particle percentage weight loading before regression occurs. UTS of BaSO4/PLLA fibre followed a similar trend to Young’s modulus and was increased by 62.23% to 118.10% and 66.48% to 83.03% for 20nm and 100nm BaSO4/PLLA respectively. However, percent elongation at break was found to be lower than pure PLLA fibre across all tested particle loadings. Compressive modulus increased with the addition of BaSO4 nanoparticles by 29.52% to 62.59%. Comparison between different sizes of BaSO4 nanoparticles in PLLA matrix did not yield notable trends or differences in tensile properties due to agglomeration of nanoparticles. Stearic acid (STE) functionalized BaSO4 in PLLA was then assessed to counter aforementioned issues but there was insignificance of Young’s Modulus and UTS increment over unfunctionalized BaSO4/PLLA. However, percent elongation at break did improve comparatively across all tested particle weight loading by 29.07% to 199.24%. In conclusion, with suitable conditions, the introduction of BaSO4 nanoparticles could possibly augment the mechanical properties of a biodegradable polymeric stent. Nevertheless, alternate forms of functionalization or fabrication tools with the ability to distribute nanoparticles uniformly should be explored to maximise the mechanical properties of BaSO4/PLLA nanocomposite material for coronary stent application.
author2 Subramanian Venkatraman
author_facet Subramanian Venkatraman
Chow, Wei Shoon
format Final Year Project
author Chow, Wei Shoon
author_sort Chow, Wei Shoon
title BaSO4/PLLA nanocomposite material for coronary stent application
title_short BaSO4/PLLA nanocomposite material for coronary stent application
title_full BaSO4/PLLA nanocomposite material for coronary stent application
title_fullStr BaSO4/PLLA nanocomposite material for coronary stent application
title_full_unstemmed BaSO4/PLLA nanocomposite material for coronary stent application
title_sort baso4/plla nanocomposite material for coronary stent application
publishDate 2016
url http://hdl.handle.net/10356/66697
_version_ 1759853943375003648